scholarly journals The receptor for urokinase-type plasminogen activator and urokinase is translocated from two distinct intracellular compartments to the plasma membrane on stimulation of human neutrophils

Blood ◽  
1994 ◽  
Vol 83 (3) ◽  
pp. 808-815 ◽  
Author(s):  
T Plesner ◽  
M Ploug ◽  
V Ellis ◽  
E Ronne ◽  
G Hoyer-Hansen ◽  
...  

The cellular receptor for urokinase-type plasminogen activator (uPAR) binds pro-urokinase (pro-uPA) and facilitates its conversion to enzymatically active urokinase (uPA). uPA in turn activates surface-bound plasminogen to plasmin, a process of presumed importance for a number of biologic processes including cell migration and resolution of thrombi. We have previously shown that uPAR is expressed on the plasma membrane of circulating neutrophils, and we now report that stimulation with phorbol myristate acetate (PMA), FMLP, or tumor necrosis factor-alpha results in a rapid increase in the expression of uPAR. This process is accompanied by an increased cell-associated plasminogen activation after preincubation of neutrophils with pro-uPA in vitro. By subcellular fractionation of unstimulated neutrophils, 50% of uPAR is recovered in fractions containing latent alkaline phosphatase, corresponding to an intracellular compartment of easily mobilizable secretory vesicles distinct from both primary and specific granules, whereas the remaining 50% of uPAR is associated with a compartment eluting close to the specific granules. In contrast, the ligand pro-uPA is primarily (approximately 80%) found in the specific granules, but small amounts of pro-uPA/uPA (approximately 20%) coelute with latent alkaline phosphatase. Stimulation of neutrophils with FMLP results in translocation of uPAR as well as of pro-uPA from the secretory vesicles, whereas stimulation with PMA is required to translocate material from specific granules. Flow cytometry of neutrophils saturated with exogenous diisopropyl fluorophosphate-uPA shows a large excess (approximately 90%) of unoccupied uPAR on resting as well as FMLP- and PMA-stimulated neutrophils, suggesting a possible role for exogenous pro-uPA in providing neutrophils with a potential for plasminogen activation. These processes may be important for neutrophil extravasation and migration through extracellular matrix and for the contribution of neutrophils to resolution of thrombi.

Blood ◽  
1994 ◽  
Vol 83 (3) ◽  
pp. 808-815 ◽  
Author(s):  
T Plesner ◽  
M Ploug ◽  
V Ellis ◽  
E Ronne ◽  
G Hoyer-Hansen ◽  
...  

Abstract The cellular receptor for urokinase-type plasminogen activator (uPAR) binds pro-urokinase (pro-uPA) and facilitates its conversion to enzymatically active urokinase (uPA). uPA in turn activates surface-bound plasminogen to plasmin, a process of presumed importance for a number of biologic processes including cell migration and resolution of thrombi. We have previously shown that uPAR is expressed on the plasma membrane of circulating neutrophils, and we now report that stimulation with phorbol myristate acetate (PMA), FMLP, or tumor necrosis factor-alpha results in a rapid increase in the expression of uPAR. This process is accompanied by an increased cell-associated plasminogen activation after preincubation of neutrophils with pro-uPA in vitro. By subcellular fractionation of unstimulated neutrophils, 50% of uPAR is recovered in fractions containing latent alkaline phosphatase, corresponding to an intracellular compartment of easily mobilizable secretory vesicles distinct from both primary and specific granules, whereas the remaining 50% of uPAR is associated with a compartment eluting close to the specific granules. In contrast, the ligand pro-uPA is primarily (approximately 80%) found in the specific granules, but small amounts of pro-uPA/uPA (approximately 20%) coelute with latent alkaline phosphatase. Stimulation of neutrophils with FMLP results in translocation of uPAR as well as of pro-uPA from the secretory vesicles, whereas stimulation with PMA is required to translocate material from specific granules. Flow cytometry of neutrophils saturated with exogenous diisopropyl fluorophosphate-uPA shows a large excess (approximately 90%) of unoccupied uPAR on resting as well as FMLP- and PMA-stimulated neutrophils, suggesting a possible role for exogenous pro-uPA in providing neutrophils with a potential for plasminogen activation. These processes may be important for neutrophil extravasation and migration through extracellular matrix and for the contribution of neutrophils to resolution of thrombi.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3579-3586 ◽  
Author(s):  
Catherine Lenich ◽  
Jian-Ning Liu ◽  
Victor Gurewich

Abstract Gene knockout mice studies indicate that urokinase-type plasminogen activator (u-PA) is importantly involved in fibrinolysis, but its physiologic mechanism of action remains poorly understood. We postulated that platelets may be involved in this mechanism, as they carry a novel receptor for u-PA and a portion of the single-chain u-PA (scu-PA) intrinsic to blood is tightly associated with platelets. Therefore, plasminogen activation by platelet-associated u-PA was studied. When washed platelets were incubated with plasminogen, no plasmin was generated as detected by plasmin synthetic substrate (S2403) hydrolysis; however, after the addition of thrombin, but not other agonists, platelet-dependent plasminogen activation occurred. Plasminogen activation was surface-related, being inhibited by blocking platelet fibrinogen receptors or by preventing plasminogen binding to the thrombin-activated platelet surface. U-PA was identified as the only plasminogen activator responsible and enrichment of platelets with exogenous scu-PA significantly augmented plasminogen activation. These findings appeared paradoxical because thrombin inactivates scu-PA. Indeed, zymograms showed inactivation of scu-PA during the first hour of incubation with even the lowest dose of thrombin used (1 u/mL). However, this was followed by a thrombin dose-dependent (1 to 10 u/mL) partial return of u-PA activity. Reactivation of u-PA was not due to the direct action of thrombin, but required platelets and was found to be related to a platelet lysosomal thiol protease, consistent with cathepsin C. In conclusion, a new pathway of plasminogen activation by platelet-associated endogenous or exogenous scu-PA was demonstrated, which is specifically triggered by thrombin activation of platelets. These findings may help explain u-PA–mediated physiological fibrinolysis and have implications for therapeutic thrombolysis with scu-PA.


1994 ◽  
Vol 299 (2) ◽  
pp. 473-479 ◽  
Author(s):  
H Sengeløv ◽  
F Boulay ◽  
L Kjeldsen ◽  
N Borregaard

The subcellular localization of N-formylmethionyl-leucyl-phenylalanine (fMLP) receptors in human neutrophils was investigated. The fMLP receptor was detected with a high-affinity, photoactivatable, radioiodinated derivative of N-formyl-methionyl-leucyl-phenylalanyl-lysine (fMLFK). Neutrophils were disrupted by nitrogen cavitation and fractionated on Percoll density gradients. fMLP receptors were located in the beta-band containing gelatinase and specific granules, and in the gamma-band containing plasma membrane and secretory vesicles. Plasma membranes and secretory vesicles were separated by high-voltage free-flow electrophoresis, and secretory vesicles were demonstrated to be highly enriched in fMLP receptors. The receptors found in secretory vesicles translocated fully to the plasma membrane upon stimulation with inflammatory mediators. The receptor translocation from the beta-band indicated that the receptor present there was mainly located in gelatinase granules. A 25 kDa fMLP-binding protein was found in the beta-band. Immunoprecipitation revealed that this protein was identical with NGAL (neutrophil gelatinase-associated lipocalin), a novel protein found in specific granules. In summary, we demonstrate that the compartment in human neutrophils that is mobilized most easily and fastest, the secretory vesicle, is a major reservoir of fMLP receptors. This explains the prompt and extensive upregulation of fMLP receptors on the neutrophil surface in response to inflammatory stimuli.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2236-2236
Author(s):  
Rocco Romagnuolo ◽  
Michael B Boffa ◽  
Marlys L Koschinsky

Abstract Abstract 2236 Lipoprotein(a) [Lp(a)] has been identified as an independent risk factor for cardiovascular diseases such as coronary heart disease. Lp(a) levels vary over 1000-fold within the human population and Lp(a) possesses both proatherogenic and prothrombotic properties due to the LDL-like moiety and apolipoprotein(a) [apo(a)] components, respectively. Apo(a) is highly homologous to plasminogen and thus can potentially interfere with plasminogen activation. Plasmin generated in the context of fibrin mediates the breakdown of blood clots, which are the causative factors in heart attacks and strokes. Plasmin generated on the surface of vascular cells plays a role in cell migration and proliferation, two of the fibroproliferative inflammatory events that underlie atherosclerosis. Previous studies have suggested that apo(a) may inhibit pericellular plasminogen activation on the basis of observations that apo(a) decreases plasminogen binding to cells. We have undertaken analysis of the mechanism by which apo(a) may interfere with pericellular plasminogen activation to allow for a more definitive description of the role of Lp(a) within the vasculature. Plasminogen activation was found to be markedly inhibited by the recombinant apo(a) variant 17K, in a dose dependent manner, on human umbilical vein endothelial cells (HUVECs), human monocytic leukemia cells (THP-1), THP-1 macrophages, and smooth muscle cells. The strong lysine binding site in kringle IV type 10, as well as kringle V appear to be required for this effect since apo(a) variants lacking these elements (17KΔAsp and 17KΔV, respectively) failed to inhibit activation. However, the role of lysine-dependent binding of apo(a) itself to the cells is not clear. Carboxypeptidase treatment of cells did not decrease apo(a) binding, and apo(a) does not compete directly for plasminogen binding to the cells. Rather, apo(a) and plasminogen may bind to the cells as a complex. We next attempted to identify the cell-surface receptor(s) that mediate plasminogen activation on the cell surface as well as its inhibition by apo(a). Urokinase-type plasminogen activator receptor (uPAR) has been previously shown to bind to urokinase-type plasminogen activator (uPA), vitronectin, and β3 integrins. uPAR is involved in the remodeling of the extracellular matrix (ECM) through regulation of plasminogen activation. We found evidence that uPAR is a potential receptor for both plasminogen and apo(a). Knockdown of uPAR in HUVECs results in decreased binding of plasminogen, 17K and, to a lesser extent, 17KΔAsp and 17KΔV. Similar experiments in SMCs revealed no changes in binding. A decrease in tPA-mediated plasminogen activation following uPAR knockdown occurred in HUVECs, and addition of 17K did not result in any further decrease. Overexpression of uPAR in THP-1 macrophages leads to greater than a two fold increase in 17K and plasminogen binding. Plasminogen activation increases over two-fold as a result of overexpression of uPAR, while 17K blunts the effect of uPAR overexpression. These results indicate that uPAR plays a crucial role in both plasminogen and apo(a) binding to the cell surface of specific cells and inhibition by apo(a) of plasminogen activation. Macrophage-1-antigen (Mac-1) receptor consists of CD11b (αM) and CD18 (β2) integrin and has been previously shown to recognize uPA and control migration and adhesion. Furthermore, αVβ3 has been previously shown to bind to vitronectin and the uPA-uPAR complex which promotes cell adhesion through binding of both vitronectin and αVβ3 integrins. We found that blocking the αM, β2, or αVβ3 receptors with monoclonal antibodies in THP-1 cells leads to a decrease in plasminogen activation, as well as a blunting of the inhibitory effects of apo(a) on plasminogen activation. These results indicate a role for Mac-1 and αVβ3 in apo(a) binding and inhibition of plasminogen activation. In conclusion, we have demonstrated, for the first time, the role of specific receptors in binding of apo(a) to vascular cell surfaces and in mediating the inhibitory effect of apo(a) on pericellular plasminogen activation. Disclosures: No relevant conflicts of interest to declare.


1994 ◽  
Vol 300 (2) ◽  
pp. 325-330 ◽  
Author(s):  
C Sjölin ◽  
O Stendahl ◽  
C Dahlgren

The annexins are Ca(2+)-regulated, phospholipid-binding proteins which have been suggested to take part in cellular events such as exocytosis. The subcellular localization of annexins in human neutrophils was determined using monoclonal antibodies against annexins I, II, IV and VI and a polyclonal peptide antiserum against an annexin consensus sequence. Several annexins were translocated to the light membrane fraction enriched in plasma membranes and secretory vesicles. Annexins were associated also with the azurophil and specific granules. Whereas annexins I, IV and VI and one unidentified 35 kDa protein translocated to each of the isolated organelles, annexin II, a 66 kDa annexin IV-like protein, and a 38 kDa annexin I-like protein exhibited organelle-related differences in their association with membranes. The 38 kDa annexin associated only with specific granules and the secretory vesicles/plasma membrane but not with azurophil granules. Annexin II and the 66 kDa annexin IV-like protein associated with each of the neutrophil organelles, but the binding to specific granules and secretory vesicles/plasma membrane showed a Ca(2+)-dependency different from that of azurophil granules. This observation suggests that these proteins may contribute to the secretory process in neutrophils.


Sign in / Sign up

Export Citation Format

Share Document