scholarly journals Regulation of protein-synthesis elongation-factor-2 kinase by cAMP in adipocytes

1998 ◽  
Vol 336 (3) ◽  
pp. 525-529 ◽  
Author(s):  
Tricia A. DIGGLE ◽  
Nicholas T. REDPATH ◽  
Kate J. HEESOM ◽  
Richard M. DENTON

Treatment of primary rat epididymal adipocytes or 3T3-L1 adipocytes with various agents which increase cAMP led to the phosphorylation of eukaryotic translation elongation factor-2 (eEF-2). The increase in eEF-2 phosphorylation was a consequence of the activation of eEF-2 kinase (eEF-2K), which is a Ca2+/calmodulin-dependent kinase. eEF-2K was shown to be essentially inactive at less than 0.1 µM free Ca2+ when measured in cell-free extracts. Treatment of adipocytes with isoproterenol induced Ca2+-independent eEF-2K activity, and an 8–10-fold activation of eEF-2K was observed at Ca2+ concentrations of less than 0.1 µM. Increased cAMP in 3T3-L1 adipocytes led to the inhibition of total protein synthesis and decreased the rate of polypeptide-chain elongation. We also show that the phosphorylation of eEF-2 and the activity of eEF-2K are insulin-regulated in adipocytes. These results demonstrate a novel mechanism for the control of protein synthesis by hormones which act by increasing cytoplasmic cAMP.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maxim V. Gerashchenko ◽  
Mikhail V. Nesterchuk ◽  
Elena M. Smekalova ◽  
Joao A. Paulo ◽  
Piotr S. Kowalski ◽  
...  

Abstract Due to breakthroughs in RNAi and genome editing methods in the past decade, it is now easier than ever to study fine details of protein synthesis in animal models. However, most of our understanding of translation comes from unicellular organisms and cultured mammalian cells. In this study, we demonstrate the feasibility of perturbing protein synthesis in a mouse liver by targeting translation elongation factor 2 (eEF2) with RNAi. We were able to achieve over 90% knockdown efficacy and maintain it for 2 weeks effectively slowing down the rate of translation elongation. As the total protein yield declined, both proteomics and ribosome profiling assays showed robust translational upregulation of ribosomal proteins relative to other proteins. Although all these genes bear the TOP regulatory motif, the branch of the mTOR pathway responsible for translation regulation was not activated. Paradoxically, coordinated translational upregulation of ribosomal proteins only occurred in the liver but not in murine cell culture. Thus, the upregulation of ribosomal transcripts likely occurred via passive mTOR-independent mechanisms. Impaired elongation sequesters ribosomes on mRNA and creates a shortage of free ribosomes. This leads to preferential translation of transcripts with high initiation rates such as ribosomal proteins. Furthermore, severe eEF2 shortage reduces the negative impact of positively charged amino acids frequent in ribosomal proteins on ribosome progression.


1975 ◽  
Vol 146 (1) ◽  
pp. 127-131 ◽  
Author(s):  
L Montanaro ◽  
S Sperti ◽  
A Mattioli ◽  
G Testoni ◽  
F Stirpe

The binding of EF2 (elongation factor 2) and of ADP-ribosyl-EF 2 to rat liver ribosomes is inhibited by ricin. This result suggests that the native enzyme and its ADP-ribose derivative have the same or closely related binding sites on the ribosome. The inhibition by ricin of the binding of EF 2 to ribosomes is consistent with the previous observation that ricin affects EF 2-catalysed translocation during polypeptide chain elongation.


2008 ◽  
Vol 52 (5) ◽  
pp. 1623-1629 ◽  
Author(s):  
Javier Botet ◽  
María Rodríguez-Mateos ◽  
Juan P. G. Ballesta ◽  
José Luis Revuelta ◽  
Miguel Remacha

ABSTRACT Sordarin and its derivatives are antifungal compounds of potential clinical interest. Despite the highly conserved nature of the fungal and mammalian protein synthesis machineries, sordarin is a selective inhibitor of protein synthesis in fungal organisms. In cells sensitive to sordarin, its mode of action is through preventing the release of translation elongation factor 2 (eEF2) during the translocation step, thus blocking protein synthesis. To further investigate the cellular components required for the effects of sordarin in fungal cells, we have used the haploid deletion collection of Saccharomyces cerevisiae to systematically identify genes whose deletion confers sensitivity or resistance to the compound. Our results indicate that genes in a number of cellular pathways previously unknown to play a role in sordarin response are involved in its growth effects on fungal cells and reveal a specific requirement for the diphthamidation pathway of cells in causing eEF2 to be sensitive to the effects of sordarin on protein synthesis. Our results underscore the importance of the powerful genomic tools developed in yeast (Saccharomyces cerevisiae) to more comprehensively understanding the cellular mechanisms involved in the response to therapeutic agents.


2021 ◽  
Author(s):  
Shiyou Liu ◽  
Tsubasa S. Matsui ◽  
Na Kang ◽  
Shinji Deguchi

Stress fibers (SFs), which are actomyosin structures, reorganize in response to various cues to maintain cellular homeostasis. Currently, the protein components of SFs are only partially identified, limiting our understanding of their responses. Here we isolate SFs from human fibroblasts HFF-1 to determine with proteomic analysis the whole protein components and how they change with replicative senescence (RS), a state where cells decline in ability to replicate after repeated divisions. We found that at least 263 proteins are associated with SFs, and 101 of them are upregulated with RS, by which SFs become larger in size. Among them, we focused on eEF2 (eukaryotic translation elongation factor 2) as it exhibited upon RS the most significant increase in abundance. We show that eEF2 is critical to the reorganization and stabilization of SFs in senescent fibroblasts. Our findings provide a novel molecular basis for SFs to be reinforced to resist cellular senescence.


Author(s):  
Shiyou Liu ◽  
Tsubasa S. Matsui ◽  
Na Kang ◽  
Shinji Deguchi

Stress fibers (SFs), which are actomyosin structures, reorganize in response to various cues to maintain cellular homeostasis. Currently, the protein components of SFs are only partially identified, limiting our understanding of their responses. Here we isolate SFs from human fibroblasts HFF-1 to determine with proteomic analysis the whole protein components and how they change with replicative senescence (RS), a state where cells decline in ability to replicate after repeated divisions. We found that at least 135 proteins are associated with SFs, and 63 of them are upregulated with RS, by which SFs become larger in size. Among them, we focused on eEF2 (eukaryotic translation elongation factor 2) as it exhibited upon RS the most significant increase in abundance. We show that eEF2 is critical to the reorganization and stabilization of SFs in senescent fibroblasts. Our findings provide a novel molecular basis for SFs to be reinforced to resist cellular senescence.


Sign in / Sign up

Export Citation Format

Share Document