scholarly journals Mutation of threonine-241 to proline eliminates autocatalytic modification of human carbonyl reductase

2000 ◽  
Vol 350 (1) ◽  
pp. 89-92 ◽  
Author(s):  
Michel A. SCIOTTI ◽  
Shizuo NAKAJIN ◽  
Bendicht WERMUTH ◽  
Michael E. BAKER

Carbonyl reductase catalyses the reduction of steroids, prostaglandins and a variety of xenobiotics. An unusual property of human and rat carbonyl reductases is that they undergo modification at lysine-239 by an autocatalytic process involving 2-oxocarboxylic acids, such as pyruvate and 2-oxoglutarate. Comparison of human carbonyl reductase with the pig enzyme, which does not undergo autocatalytic modification, identified three sites, alanine-236, threonine-241 and glutamic acid-246, on human carbonyl reductase that could be important in the reaction of lysine-239 with 2-oxocarboxylic acids. Mutagenesis experiments show that replacement of threonine-241 with proline (T241P) in human carbonyl reductase eliminates the formation of carboxyethyl-lysine-239. In contrast, the T241A mutant has autocatalytic activity similar to wild-type carbonyl reductase. The T241P mutant retains catalytic activity towards menadione, although with one-fifth the catalytic efficiency of wild-type carbonyl reductase. Replacement of threonine-241 with proline is likely to disrupt the local structure near lysine-239. We propose that integrity of this local environment is essential for chemical modification of lysine-239, but not absolutely required for carbonyl reductase activity.

2007 ◽  
Vol 405 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Matthew Spite ◽  
Shahid P. Baba ◽  
Yonis Ahmed ◽  
Oleg A. Barski ◽  
Kanchan Nijhawan ◽  
...  

Phospholipid oxidation generates several bioactive aldehydes that remain esterified to the glycerol backbone (‘core’ aldehydes). These aldehydes induce endothelial cells to produce monocyte chemotactic factors and enhance monocyte–endothelium adhesion. They also serve as ligands of scavenger receptors for the uptake of oxidized lipoproteins or apoptotic cells. The biochemical pathways involved in phospholipid aldehyde metabolism, however, remain largely unknown. In the present study, we have examined the efficacy of the three mammalian AKR (aldo-keto reductase) families in catalysing the reduction of phospholipid aldehydes. The model phospholipid aldehyde POVPC [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine] was efficiently reduced by members of the AKR1, but not by the AKR6 or the ARK7 family. In the AKR1 family, POVPC reductase activity was limited to AKR1A and B. No significant activity was observed with AKR1C enzymes. Among the active proteins, human AR (aldose reductase) (AKR1B1) showed the highest catalytic activity. The catalytic efficiency of human small intestinal AR (AKR1B10) was comparable with the murine AKR1B proteins 1B3 and 1B8. Among the murine proteins AKR1A4 and AKR1B7 showed appreciably lower catalytic activity as compared with 1B3 and 1B8. The human AKRs, 1B1 and 1B10, and the murine proteins, 1B3 and 1B8, also reduced C-7 and C-9 sn-2 aldehydes as well as POVPE [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphoethanolamine]. AKR1A4, B1, B7 and B8 catalysed the reduction of aldehydes generated in oxidized C16:0-20:4 phosphatidylcholine with acyl, plasmenyl or alkyl linkage at the sn-1 position or C16:0-20:4 phosphatidylglycerol or phosphatidic acid. AKR1B1 displayed the highest activity with phosphatidic acids; AKR1A4 was more efficient with long-chain aldehydes such as 5-hydroxy-8-oxo-6-octenoyl derivatives, whereas AKR1B8 preferred phosphatidylglycerol. These results suggest that proteins of the AKR1A and B families are efficient phospholipid aldehyde reductases, with non-overlapping substrate specificity, and may be involved in tissue-specific metabolism of endogenous or dietary phospholipid aldehydes.


2016 ◽  
Vol 60 (5) ◽  
pp. 3123-3126 ◽  
Author(s):  
Carlo Bottoni ◽  
Mariagrazia Perilli ◽  
Francesca Marcoccia ◽  
Alessandra Piccirilli ◽  
Cristina Pellegrini ◽  
...  

ABSTRACTSite-directed mutagenesis of CphA indicated that prolines in the P158-P172 loop are essential for the stability and the catalytic activity of subclass B2 metallo-β-lactamases against carbapenems. The sequential substitution of proline led to a decrease of the catalytic efficiency of the variant compared to the wild-type (WT) enzyme but also to a higher affinity for the binding of the second zinc ion.


2020 ◽  
Vol 33 ◽  
Author(s):  
Subba Reddy Dodda ◽  
Nibedita Sarkar ◽  
Piyush Jain ◽  
Kaustav Aikat ◽  
Sudit S Mukhopadhyay

Abstract Cheap production of glucose is the current challenge for the production of cheap bioethanol. Ideal protein engineering approaches are required for improving the efficiency of the members of the cellulase, the enzyme complex involved in the saccharification process of cellulose. An attempt was made to improve the efficiency of the cellobiohydrolase (Cel6A), the important member of the cellulase isolated from Aspergillus fumigatus (AfCel6A). Structure-based variants of AfCel6A were designed. Amino acids surrounding the catalytic site and conserved residues in the cellulose-binding domain were targeted (N449V, N168G, Y50W and W24YW32Y). I mutant 3 server was used to identify the potential variants based on the free energy values (∆∆G). In silico structural analyses and molecular dynamics simulations evaluated the potentiality of the variants for increasing thermostability and catalytic activity of Cel6A. Further enzyme studies with purified protein identified the N449V is highly thermo stable (60°C) and pH tolerant (pH 5–7). Kinetic studies with Avicel determined that substrate affinity of N449V (Km =0.90 ± 0.02) is higher than the wild type (1.17 ± 0.04) and the catalytic efficiency (Kcat/Km) of N449V is ~2-fold higher than wild type. All these results suggested that our strategy for the development of recombinant enzyme is a right approach for protein engineering.


Author(s):  
Wencai Zhang ◽  
Mianxing Luo ◽  
Meng Zhang ◽  
Guo Chen ◽  
Hongwei Guo ◽  
...  

Topology engineering is an attractive approach for tailoring protein properties without varying their native sequences. To explore whether concatenation allow, Herein, we report a dramatic improvement of catalytic efficiencies of alditol oxidase by catenanes assisted by synergy between mechanically interlocking p53dim and highly efficient SpyTag/SpyCathcher cyclization. Mechanical interlocking leads to considerable activity enhancement than that achieved by point mutation. Kinetic analysis demonstrates that the substrates affinity and catalytic efficiency of alditol oxdiase catenanes(catAldO) towards glycerol respectively have 6.7-fold and 5.5-fold improvement compared with the wild-type AldO. We envisioned that mechanically interlocked alditol oxidase may shorten the transfer distance of electrons between subdormains and accelerate FAD cofactor redox regeneration, thus improving enzyme catalytic activity. Surprisingly, concatenation of alditol oxidase not only increase the catalytic efficiency towards glycerol, but also exhibit a broad biocatalytic reinforcement. Mechanical interlocking provides a convenient and efficient approach for multi-domains enzyme concatenation, with potential to greatly enhance the catalytic efficiency of biocatalysts. It needs more verification in other enzymes.


2019 ◽  
Vol 20 (24) ◽  
pp. 6224 ◽  
Author(s):  
Bangqiao Yin ◽  
Qinyan Hui ◽  
Muhammad Kashif ◽  
Ran Yu ◽  
Si Chen ◽  
...  

Butyl glucoside synthesis using bioenzymatic methods at high temperatures has gained increasing interest. Protein engineering using directed evolution of a metagenome-derived β-glucosidase of Bgl1D was performed to identify enzymes with improved activity and thermostability. An interesting mutant Bgl1D187 protein containing five amino acid substitutions (S28T, Y37H, D44E, R91G, and L115N), showed catalytic efficiency (kcat/Km of 561.72 mM−1 s−1) toward ρ-nitrophenyl-β-d-glucopyranoside (ρNPG) that increased by 23-fold, half-life of inactivation by 10-fold, and further retained transglycosidation activity at 50 °C as compared with the wild-type Bgl1D protein. Site-directed mutagenesis also revealed that Asp44 residue was essential to β-glucosidase activity of Bgl1D. This study improved our understanding of the key amino acids of the novel β-glucosidases and presented a raw material with enhanced catalytic activity and thermostability for the synthesis of butyl glucosides.


1998 ◽  
Vol 334 (3) ◽  
pp. 553-557 ◽  
Author(s):  
Shizuo NAKAJIN ◽  
Noriko TAKASE ◽  
Shuji OHNO ◽  
Satoshi TOYOSHIMA ◽  
Michael E. BAKER

Pig 3α/β,20β-hydroxysteroid dehydrogenase is an NADPH-dependent enzyme that catalyses the reduction of ketones on steroids and aldehydes and ketones on various xenobiotics, like its homologue carbonyl reductase. 3α/β,20β-Hydroxysteroid dehydrogenase and carbonyl reductase are members of the short-chain dehydrogenases/reductase family, in which a tyrosine residue and a lysine residue have been identified as catalytically important. In pig 20β-hydroxysteroid dehydrogenase these residues are tyrosine-194 and lysine-198. Here we report the effect on the reduction of two ketone and two aldehyde substrates by pig 3α/β,20β-hydroxysteroid dehydrogenase in which tyrosine-194 has been mutated to phenylalanine and cysteine, and lysine-198 has been mutated to isoleucine and arginine. Mutants with phenylalanine-194 or isoleucine-198 are inactive. Depending on the substrate, the mutant with cysteine-194 has a catalytic efficiency of 0.4–1% and the mutant with arginine-198 has a catalytic efficiency of 4–23% of the wild-type enzyme. We also mutated tyrosine-81 and tyrosine-253 to phenylalanine. Although both tyrosines are conserved in 3α/β,20β-hydroxysteroid dehydrogenase and carbonyl reductase, depending on the substrate, the mutant enzymes are as active as, or more active than, wild-type enzyme.


2021 ◽  
Vol 11 (2) ◽  
pp. 94
Author(s):  
Masaki Kumondai ◽  
Akio Ito ◽  
Evelyn Marie Gutiérrez Rico ◽  
Eiji Hishinuma ◽  
Akiko Ueda ◽  
...  

Cytochrome P450 2C9 (CYP2C9) is an important drug-metabolizing enzyme that contributes to the metabolism of approximately 15% of clinically used drugs, including warfarin, which is known for its narrow therapeutic window. Interindividual differences in CYP2C9 enzymatic activity caused by CYP2C9 genetic polymorphisms lead to inconsistent treatment responses in patients. Thus, in this study, we characterized the functional differences in CYP2C9 wild-type (CYP2C9.1), CYP2C9.2, CYP2C9.3, and 12 rare novel variants identified in 4773 Japanese individuals. These CYP2C9 variants were heterologously expressed in 293FT cells, and the kinetic parameters (Km, kcat, Vmax, catalytic efficiency, and CLint) of (S)-warfarin 7-hydroxylation and tolbutamide 4-hydroxylation were estimated. From this analysis, almost all novel CYP2C9 variants showed significantly reduced or null enzymatic activity compared with that of the CYP2C9 wild-type. A strong correlation was found in catalytic efficiencies between (S)-warfarin 7-hydroxylation and tolbutamide 4-hydroxylation among all studied CYP2C9 variants. The causes of the observed perturbation in enzyme activity were evaluated by three-dimensional structural modeling. Our findings could clarify a part of discrepancies among genotype–phenotype associations based on the novel CYP2C9 rare allelic variants and could, therefore, improve personalized medicine, including the selection of the appropriate warfarin dose.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Alberto Guevara-Flores ◽  
Irene P. del Arenal ◽  
Guillermo Mendoza-Hernández ◽  
Juan Pablo Pardo ◽  
Oscar Flores-Herrera ◽  
...  

Mitochondrial thioredoxin-glutathione reductase was purified from larvalTaenia crassiceps(cysticerci). The preparation showed NADPH-dependent reductase activity with either thioredoxin or GSSG, and was able to perform thiol/disulfide exchange reactions. At25∘Cspecific activities were437  ±  27mU mg-1and840  ±  49mU mg-1with thioredoxin and GSSG, respectively. ApparentKmvalues were0.87  ±  0.04 μM,41  ±  6 μM and19  ±  10 μM for thioredoxin, GSSG and NADPH, respectively. Thioredoxin from eukaryotic sources was accepted as substrate. The enzyme reduced H2O2in a NADPH-dependent manner, although with low catalytic efficiency. In the presence of thioredoxin, mitochondrial TGR showed a thioredoxin peroxidase-like activity. All disulfide reductase activities were inhibited by auranofin, suggesting mTGR is dependent on selenocysteine. The reductase activity with GSSG showed a higher dependence on temperature as compared with the DTNB reductase activity. The variation of the GSSG- and DTNB reductase activities on pH was dependent on the disulfide substrate. Like the cytosolic isoform, mTGR showed a hysteretic kinetic behavior at moderate or high GSSG concentrations, but it was less sensitive to calcium. The enzyme was able to protect glutamine synthetase from oxidative inactivation, suggesting that mTGR is competent to contend with oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document