Cloning and identification of MYPT3: a prenylatable myosin targetting subunit of protein phosphatase 1

2001 ◽  
Vol 356 (1) ◽  
pp. 257-267 ◽  
Author(s):  
Jeffrey A. SKINNER ◽  
Alan R. SALTIEL

To identify novel protein phosphatase 1 (PP1)-interacting proteins, a yeast two-hybrid 3T3-L1 adipocyte cDNA library was screened with the catalytic subunit of PP1 as bait. In the present work, the isolation, identification and initial biochemical characterization of a novel PP1-interacting protein, MYPT3, which is homologous with the myosin phosphatase targetting subunit (MYPT) family, is described. MYPT3 aligns > 99% with a region of mouse genomic DNA clone RP23-156P23 and localizes to chromosome 15, between markers at 44.1–46.5cM, as demonstrated by radiation hybrid mapping. The gene consists of ten exons that encode for a 524-amino acid sequence with a predicted molecular mass of 57529Da. The N-terminal region of MYPT3 consists of a consensus PP1-binding site and multiple ankyrin repeats. MYPT3 is distinguished from related ∼ 110–130kDa MYPT subunits by its molecular mass of 58kDa, and a unique C-terminal region that contains several potential signalling motifs and a CaaX prenylation site. We have shown that affinity-purified glutathione S-transferase (GST)–MYPT3 is prenylated by purified recombinant farnesyltransferase in vitro. Endogenous PP1 from 3T3-L1 lysates specifically interacts with MYPT3. Additionally, purified PP1 activity was inhibited by GST–MYPT3 toward phosphorylase a, myosin light chain and myosin substrate in vitro. Overall, our findings identify a novel prenylatable subunit of PP1 that defines a new subfamily of MYPT.

2002 ◽  
Vol 22 (16) ◽  
pp. 6000-6013 ◽  
Author(s):  
Steven L. Sanders ◽  
Krassimira A. Garbett ◽  
P. Anthony Weil

ABSTRACT We previously defined Saccharomyces cerevisiae TFIID as a 15-subunit complex comprised of the TATA binding protein (TBP) and 14 distinct TBP-associated factors (TAFs). In this report we give a detailed biochemical characterization of this general transcription factor. We have shown that yeast TFIID efficiently mediates both basal and activator-dependent transcription in vitro and displays TATA box binding activity that is functionally distinct from that of TBP. Analyses of the stoichiometry of TFIID subunits indicated that several TAFs are present at more than 1 copy per TFIID complex. This conclusion was further supported by coimmunoprecipitation experiments with a systematic family of (pseudo)diploid yeast strains that expressed epitope-tagged and untagged alleles of the genes encoding TFIID subunits. Based on these data, we calculated a native molecular mass for monomeric TFIID. Purified TFIID behaved in a fashion consistent with this calculated molecular mass in both gel filtration and rate-zonal sedimentation experiments. Quite surprisingly, although the TAF subunits of TFIID cofractionated as a single complex, TBP did not comigrate with the TAFs during either gel filtration chromatography or rate-zonal sedimentation, suggesting that TBP has the ability to dynamically associate with the TFIID TAFs. The results of direct biochemical exchange experiments confirmed this hypothesis. Together, our results represent a concise molecular characterization of the general transcription factor TFIID from S. cerevisiae.


2021 ◽  
Vol 22 ◽  
Author(s):  
Adnan Ayna ◽  
Luqman Khosnaw ◽  
Yusuf Temel ◽  
Mehmet Ciftci

Background: The glutathione S-transferases (GSTs) are family of enzymes that are notable for their role in phase II detoxification reactions. Antibiotics have been reported to have several adverse effects on the activity of the enzymes in mammals. Aim: The aim of this study was structural and biochemical characterization of rat erythrocyte GST and understanding the effects of gentamicin, clindamycin, cefazolin, ampicillin and scopolamine butylbromide on the activity of human erythrocyte GST using rat as a model. Methods: The enzyme was purified by GSH-agarose affinity chromatography. In vitro GST enzyme activity was measured at 25°C using CDNB as a model substrate. IC50 of drugs were measured by activity %–vs compound concentration graphs. Lineweaver–Burk graphs were drawn to determine the inhibition type and Ki constants for the drugs. The structure of the enzyme was predicted via Protein Homology/analogY Recognition Engine. Results: In this study, GST was purified from rat erythrocyte with a specific activity of 6.3 EU/mg protein, 44 % yield and 115 fold. Gentamicin and clindamycin inhibited the enzymatic activity with IC50 of 1.69 and 6.9 mM and Ki of 1.70 and 2.36 mM, respectively. Ampicillin and scopolamine butylbromide were activator of the enzyme while the activity of the enzyme was insensitive to cefazolin. The enzyme was further characterized by homology modeling and sequence alignment revealing similarities with human GST. Conclusion: Collectively, it could be concluded that gentamicin and clindamycin are the inhibitors of erythrocyte GST.


2011 ◽  
Vol 435 (1) ◽  
pp. 73-83 ◽  
Author(s):  
George W. Templeton ◽  
Mhairi Nimick ◽  
Nicholas Morrice ◽  
David Campbell ◽  
Marilyn Goudreault ◽  
...  

PP1 (protein phosphatase 1) is among the most conserved enzymes known, with one or more isoforms present in all sequenced eukaryotic genomes. PP1 dephosphorylates specific serine/threonine phosphoproteins as defined by associated regulatory or targeting subunits. In the present study we performed a PP1-binding screen to find putative PP1 interactors in Arabidopsis thaliana and uncovered a homologue of the ancient PP1 interactor, I-2 (inhibitor-2). Bioinformatic analysis revealed remarkable conservation of three regions of plant I-2 that play key roles in binding to PP1 and regulating its function. The sequence-related properties of plant I-2 were compared across eukaryotes, indicating a lack of I-2 in some species and the emergence points from key motifs during the evolution of this ancient regulator. Biochemical characterization of AtI-2 (Arabidopsis I-2) revealed its ability to inhibit all plant PP1 isoforms and inhibitory dependence requiring the primary interaction motif known as RVXF. Arabidopsis I-2 was shown to be a phosphoprotein in vivo that was enriched in the nucleus. TAP (tandem affinity purification)-tag experiments with plant I-2 showed in vivo association with several Arabidopsis PP1 isoforms and identified other potential I-2 binding proteins.


Plant Disease ◽  
2016 ◽  
Vol 100 (7) ◽  
pp. 1414-1423 ◽  
Author(s):  
Weichao Ren ◽  
Wenyong Shao ◽  
Xu Han ◽  
Mingguo Zhou ◽  
Changjun Chen

Botrytis cinerea is a filamentous phytopathogen with a high risk of developing resistance to fungicides. The phenylpyrrole fungicide fludioxonil has been reported to have excellent activity against B. cinerea and increasingly has been applied to control gray mold in China. In this study, molecular and biochemical characteristics of laboratory and field mutants of B. cinerea resistant to fludioxonil has been investigated. During 2012 to 2014, B. cinerea isolates collected from Jiangsu and Shandong Provinces in China were tested in vitro for sensitivity to fungicides commonly used to suppress gray mold of cucumber and tomato. Among the 75 isolates collected from cucumber in 2013, two were highly resistant (HR) to fludioxonil. Of the 308 isolates collected from tomato in 2014, four were fludioxonil-HR. This was the first time that B. cinerea isolates HR to fludioxonil had been detected in the field. Six fludioxonil-resistant mutants were obtained in the laboratory by selection on fungicide-amended media. These mutants exhibited stable resistance to fludioxonil, as indicated by resistance factor values that ranged from 34.38 to >10,000. In comparison with fludioxonil-sensitive isolates of B. cinerea, all field and laboratory mutants showed reduced fitness, as defined by mycelial growth, sporulation, virulence, and sensitivity to osmotic stress. When treated with fludioxonil at 1 μg/ml, sensitive isolates showed increased glycerol contents in mycelium and expression levels of Bchog1, while levels in field and laboratory HR mutants increased only slightly. Sequences of the Bos1 gene of field and laboratory fludioxonil-HR mutants showed that mutations in field mutants were located in the histidine kinase, adenylyl cyclase, methyl-accepting chemotaxis protein, and phosphatase (HAMP) domains of the N-terminal region, whereas mutations in the laboratory mutants were distributed in HAMP domains or in the HATPase_c domain of the C-terminal region. These results will enhance our understanding of the resistance mechanism of B. cinerea to fludioxonil.


2018 ◽  
Vol 475 (16) ◽  
pp. 2621-2636 ◽  
Author(s):  
Akhilesh K. Yadav ◽  
Saroj K. Jha ◽  
Sibaji K. Sanyal ◽  
Sheng Luan ◽  
Girdhar K. Pandey

Calcium (Ca2+) is a versatile and ubiquitous second messenger in all eukaryotes including plants. In response to various stimuli, cytosolic calcium concentration ([Ca2+]cyt) is increased, leading to activation of Ca2+ sensors including Arabidopsis calcineurin B-like proteins (CBLs). CBLs interact with CBL-interacting protein kinases (CIPKs) to form CBL–CIPK complexes and transduce the signal downstream in the signalling pathway. Although there are many reports on the regulation of downstream targets by CBL–CIPK module, knowledge about the regulation of upstream components by individual CIPKs is inadequate. In the present study, we have carried out a detailed biochemical characterization of CIPK9, a known regulator of K+ deficiency in Arabidopsis, with its interacting CBLs. The present study suggests that CIPK9 specifically interacts with four CBLs, i.e. CBL1, CBL2, CBL3 and CBL9, in yeast two-hybrid assays. Out of these four CBLs, CBL2 and CBL3, specifically enhance the kinase activity of CIPK9, while the CBL1 and CBL9 decrease it as examined by in vitro kinase assays. In contrast, truncated CIPK9 (CIPK9ΔR), without the CBL-interacting regulatory C-terminal region, is not differentially activated by interacting CBLs. The protein phosphorylation assay revealed that CBL2 and CBL3 serve as preferred substrates of CIPK9. CBL2– and CBL3–CIPK9 complexes show altered requirement for metal cofactors when compared with CIPK9 alone. Moreover, the autophosphorylation of constitutively active CIPK9 (CIPK9T178D) and less active CIPK9 (CIPK9T178A) in the presence of CBL2 and CBL3 was further enhanced. Our study suggests that CIPK9 differentially phosphorylates interacting CBLs, and furthermore, the kinase activity of CIPK9 is also differentially regulated by specific interacting CBLs.


1985 ◽  
Vol 22 (4) ◽  
pp. 375-386 ◽  
Author(s):  
H. C. Wimberly ◽  
D. O. Slauson ◽  
N. R. Neilsen

Antigen-specific challenge of equine leukocytes induced the non-lytic release of a platelet-activating factor in vitro. The equine platelet-activating factor stimulated the release of serotonin from equine platelets in a dose-responsive manner, independent of the presence of cyclo-oxygenase pathway inhibitors such as indomethacin. Rabbit platelets were also responsive to equine platelet-activating factor. The release of equine platelet-activating factor was a rapid reaction with near maximal secretion taking place in 30 seconds. Addition of equine platelet-activating factor to washed equine platelets stimulated platelet aggregation which could not be inhibited by the presence of aspirin or indomethacin. Platelets preincubated with equine platelet-activating factor became specifically desensitized to equine platelet-activating factor while remaining responsive to other platelet stimuli such as collagen and epinephrine. The following biochemical properties of equine platelet-activating factor are identical to those properties of 1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AGEPC): stability upon exposure to air and acid; loss of functional activity after basecatalyzed methanolysis with subsequent acylation that returned all functional activity; and identical relative mobilities on silica gel G plates developed with chloroform:methanol:water (65:35:6, volume/volume). The combined functional and biochemical characteristics of equine platelet-activating factor strongly suggest identity between this naturally occurring, immunologically derived equine factor and AGEPC.


1985 ◽  
Vol 101 (2) ◽  
pp. 427-440 ◽  
Author(s):  
E Bartnik ◽  
M Osborn ◽  
K Weber

To screen invertebrate tissues for the possible expression of intermediate filaments (IFs), immunofluorescence microscopy with the monoclonal antibody anti-IFA known to detect all mammalian IF proteins was used (Pruss, R. M., R. Mirsky, M. C. Raff, R. Thorpe, A. J. Dowding, and B. H. Anderton. 1981. Cell, 27:419-428). In a limited survey, the lower chordate Branchiostoma as well as the invertebrates Arenicola, Lumbricus, Ascaris, and Helix pomatia revealed a positive reaction primarily on epithelia and on nerves, whereas certain other invertebrates appeared negative. To assess the nature of the positive reaction, Helix pomatia was used since a variety of epithelia was strongly stained by anti-IFA. Fixation-extraction procedures were developed that preserve in electron micrographs of esophagus impressive arrays of IFs as tonofilament bundles. Fractionation procedures performed on single cell preparations document large meshworks of long and curvilinear IF by negative stain. These structures can be purified. One- and two-dimensional gels show three components, all of which are recognized by anti-IFA in immunoblotting: 66 kD/pl 6.35, 53 kD/pl 6.05, and 52 kD/pl 5.95. The molar ratio between the larger and more basic polypeptide and the sum of the two more acidic forms is close to 1. After solubilization in 8.5 M urea, in vitro filament reconstitution is induced when urea is removed by dialysis against 2-50 mM Tris buffer at pH 7.8. The reconstituted filaments contain all three polypeptides. The results establish firmly the existence of invertebrate IFs outside neurones and demonstrate that the esophagus of Helix pomatia displays IFs which in line with the epithelial morphology of the tissue could be related to keratin IF of vertebrates.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Srikanth Perike ◽  
Xander Wehrens ◽  
Dawood Darbar ◽  
Mark McCauley

Background: Atrial fibrillation (AF) is the most common cardiac arrhythmia, and increases a patient’s stroke risk five-fold. Reduced atrial contractility (stunning) is observed in AF and contributes to stroke risk; however, the mechanisms responsible for atrial stunning in AF are unknown. Recent data from our laboratory indicate that protein phosphatase 1 (PP1) dephosphorylation of myosin light chain 2a (MLC2a) may contribute to atrial stunning in AF. Objective: To determine how the PP1 regulatory subunit 12C (PPP1R12C) and catalytic (PPP1c) subunits modify atrial sarcomere phosphorylation in AF. Methods: We evaluated the protein expression, binding and phosphorylation among PPP1R12C, PPP1c, and MLC2a in transfected HL-1 cells, murine atrial tissue (Pitx2null +/– mice, with a genetic predisposition AF), and in HEK cells. An inhibitor of PPP1R12C phosphorylation, BDP5290, was used to enhance the PPP1R12C-PPP1C interaction. Results: In Pitx2 null +/– mice, PPP1R12C was increased by 2-fold ( P <0.01) and associated with a 40% reduction in S-19-MLC2a phosphorylation versus WT mice ( P <0.058). BDP5290 increased PPP1R12C-PPP1C binding by >3-fold in HL-1 cells ( P <0.01). BDP5290 reduced MLC2a phosphorylation by 40% through an enhanced interaction with PPP1R12C by >3-fold in HEK cells ( P <0.01). Conclusion: In Pitx2 null+/- mice, increased expression of PPP1R12C is associated with PP1 holoenzyme targeting to sarcomeric MLC2a, and is associated with reduced S19-MLC2a phosphorylation. Additionally, BDP5290 enhances the PPP1R12C-PPP1C interaction and models PP1 activity in AF. Future studies will examine the effects of both AF and BDP5290 upon atrial contractility in vitro.


Author(s):  
Dennis Zimmermann ◽  
Alisha N. Morganthaler ◽  
David R. Kovar ◽  
Cristian Suarez

Sign in / Sign up

Export Citation Format

Share Document