scholarly journals Intermediate filaments in non-neuronal cells of invertebrates: isolation and biochemical characterization of intermediate filaments from the esophageal epithelium of the mollusc Helix pomatia.

1985 ◽  
Vol 101 (2) ◽  
pp. 427-440 ◽  
Author(s):  
E Bartnik ◽  
M Osborn ◽  
K Weber

To screen invertebrate tissues for the possible expression of intermediate filaments (IFs), immunofluorescence microscopy with the monoclonal antibody anti-IFA known to detect all mammalian IF proteins was used (Pruss, R. M., R. Mirsky, M. C. Raff, R. Thorpe, A. J. Dowding, and B. H. Anderton. 1981. Cell, 27:419-428). In a limited survey, the lower chordate Branchiostoma as well as the invertebrates Arenicola, Lumbricus, Ascaris, and Helix pomatia revealed a positive reaction primarily on epithelia and on nerves, whereas certain other invertebrates appeared negative. To assess the nature of the positive reaction, Helix pomatia was used since a variety of epithelia was strongly stained by anti-IFA. Fixation-extraction procedures were developed that preserve in electron micrographs of esophagus impressive arrays of IFs as tonofilament bundles. Fractionation procedures performed on single cell preparations document large meshworks of long and curvilinear IF by negative stain. These structures can be purified. One- and two-dimensional gels show three components, all of which are recognized by anti-IFA in immunoblotting: 66 kD/pl 6.35, 53 kD/pl 6.05, and 52 kD/pl 5.95. The molar ratio between the larger and more basic polypeptide and the sum of the two more acidic forms is close to 1. After solubilization in 8.5 M urea, in vitro filament reconstitution is induced when urea is removed by dialysis against 2-50 mM Tris buffer at pH 7.8. The reconstituted filaments contain all three polypeptides. The results establish firmly the existence of invertebrate IFs outside neurones and demonstrate that the esophagus of Helix pomatia displays IFs which in line with the epithelial morphology of the tissue could be related to keratin IF of vertebrates.

1994 ◽  
Vol 107 (10) ◽  
pp. 2839-2849 ◽  
Author(s):  
J.C. Bulinski ◽  
A. Bossler

In previous studies (Bulinski and Borisy (1979). Proc. Nat. Acad. Sci. 76, 293–297; Weatherbee et al. (1980). Biochemistry 19, 4116–4123) a microtubule-associated protein (MAP) of M(r) approximately 125,000 was identified as a prominent MAP in HeLa cells. We set out to perform a biochemical characterization of this protein, and to determine its in vitro functions and in vivo distribution. We determined that, like the assembly-promoting MAPs, tau, MAP2 and MAP4, the 125 kDa MAP was both proteolytically sensitive and thermostable. An additional property of this MAP; namely, its unusually tight association with a calcium-insensitive population of MTs in the presence of taxol, was exploited in devising an efficient purification strategy. Because of the MAP's tenacious association with a stable population of MTs, and because it appeared to contribute to the stability of this population of MTs in vitro, we have named this protein ensconsin. We examined the binding of purified ensconsin to MTs; ensconsin exhibited binding that saturated its MT binding sites at an approximate molar ratio of 1:6 (ensconsin:tubulin). Unlike other MAPs characterized to date, ensconsin's binding to MTs was insensitive to moderate salt concentrations (< or = 0.6 M). We further characterized ensconsin in immunoblotting experiments using mouse polyclonal anti-ensconsin antibodies and antibodies reactive with previously described MAPs, such as high molecular mass tau isoforms, dynamin, STOP, CLIP-170 and kinesin. These experiments demonstrated that ensconsin is distinct from other proteins of similar M(r) that may be present in association with MTs. Immunofluorescence with anti-ensconsin antibodies demonstrated that ensconsin was detectable in association with most or all of the MTs of several lines of human epithelial, fibroblastic and muscle cells; its in vivo properties and distribution, especially in response to drug or other treatments of cells, were found to be different from those of MAP4, the predominant MAP found in these cell types. We conclude that ensconsin, a MAP found in a variety of human cells, is biochemically - and perhaps functionally - distinct from other MAPs present in non-neuronal cells.


1985 ◽  
Vol 22 (4) ◽  
pp. 375-386 ◽  
Author(s):  
H. C. Wimberly ◽  
D. O. Slauson ◽  
N. R. Neilsen

Antigen-specific challenge of equine leukocytes induced the non-lytic release of a platelet-activating factor in vitro. The equine platelet-activating factor stimulated the release of serotonin from equine platelets in a dose-responsive manner, independent of the presence of cyclo-oxygenase pathway inhibitors such as indomethacin. Rabbit platelets were also responsive to equine platelet-activating factor. The release of equine platelet-activating factor was a rapid reaction with near maximal secretion taking place in 30 seconds. Addition of equine platelet-activating factor to washed equine platelets stimulated platelet aggregation which could not be inhibited by the presence of aspirin or indomethacin. Platelets preincubated with equine platelet-activating factor became specifically desensitized to equine platelet-activating factor while remaining responsive to other platelet stimuli such as collagen and epinephrine. The following biochemical properties of equine platelet-activating factor are identical to those properties of 1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AGEPC): stability upon exposure to air and acid; loss of functional activity after basecatalyzed methanolysis with subsequent acylation that returned all functional activity; and identical relative mobilities on silica gel G plates developed with chloroform:methanol:water (65:35:6, volume/volume). The combined functional and biochemical characteristics of equine platelet-activating factor strongly suggest identity between this naturally occurring, immunologically derived equine factor and AGEPC.


Author(s):  
Dennis Zimmermann ◽  
Alisha N. Morganthaler ◽  
David R. Kovar ◽  
Cristian Suarez

FEBS Letters ◽  
1998 ◽  
Vol 428 (3) ◽  
pp. 235-240 ◽  
Author(s):  
Kenzo Ohtsuki ◽  
Toshiro Maekawa ◽  
Shigeyoshi Harada ◽  
Atsushi Karino ◽  
Yuko Morikawa ◽  
...  

2019 ◽  
Vol 166 (1) ◽  
pp. 51-66 ◽  
Author(s):  
Jan M Klenk ◽  
Max-Philipp Fischer ◽  
Paulina Dubiel ◽  
Mahima Sharma ◽  
Benjamin Rowlinson ◽  
...  

AbstractCytochrome P450 monooxygenases (P450s) play crucial roles in the cell metabolism and provide an unsurpassed diversity of catalysed reactions. Here, we report the identification and biochemical characterization of two P450s from Arthrobacter sp., a Gram-positive organism known to degrade the opium alkaloid papaverine. Combining phylogenetic and genomic analysis suggested physiological roles for P450s in metabolism and revealed potential gene clusters with redox partners facilitating the reconstitution of the P450 activities in vitro. CYP1232F1 catalyses the para demethylation of 3,4-dimethoxyphenylacetic acid to homovanillic acid while CYP1232A24 continues demethylation to 3,4-dihydroxyphenylacetic acid. Interestingly, the latter enzyme is also able to perform both demethylation steps with preference for the meta position. The crystal structure of CYP1232A24, which shares only 29% identity to previous published structures of P450s helped to rationalize the preferred demethylation specificity for the meta position and also the broader substrate specificity profile. In addition to the detailed characterization of the two P450s using their physiological redox partners, we report the construction of a highly active whole-cell Escherichia coli biocatalyst expressing CYP1232A24, which formed up to 1.77 g l−1 3,4-dihydroxyphenylacetic acid. Our results revealed the P450s’ role in the metabolic pathway of papaverine enabling further investigation and application of these biocatalysts.


2001 ◽  
Vol 38 (6) ◽  
pp. 1421-1429 ◽  
Author(s):  
Alessandra Boletta ◽  
Feng Qian ◽  
Luiz F. Onuchic ◽  
Alessandra Bragonzi ◽  
Marina Cortese ◽  
...  

2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Pavan Kumar Dara ◽  
R. Mahadevan ◽  
P. A. Digita ◽  
S. Visnuvinayagam ◽  
Lekshmi R. G. Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document