Presteady-state kinetics of Bacillus 1,3–1,4-β-glucanase: binding and hydrolysis of a 4-methylumbelliferyl trisaccharide substrate

2001 ◽  
Vol 357 (1) ◽  
pp. 195-202
Author(s):  
Mireia ABEL ◽  
Antoni PLANAS ◽  
Ulla CHRISTENSEN

In the present study the first stopped-flow experiments performed on Bacillus 1,3–1,4-β-glucanases are reported. The presteady-state kinetics of the binding of 4-methylumbelliferyl 3-O-β-cellobiosyl-β-d-glucoside to the inactive mutant E134A, and the wild-type-catalysed hydrolysis of the same substrate, were studied by measuring changes in the fluorescence of bound substrate or 4-methylumbelliferone produced. The presteady-state traces all showed an initial lag phase followed by a fast monoexponential phase leading to equilibration (for binding to E134A) or to steady state product formation (for the wild-type reaction). The lag phase, with a rate constant of the order of 100s−1, was independent of the substrate concentration; apparently an induced-fit mechanism governs the formation of enzyme–substrate complexes. The concentration dependencies of the observed rate constant of the second presteady-state phase were analysed according to a number of reaction models. For the reaction of the wild-type enzyme, it is shown that the fast product formation observed before steady state is not due to a rate-determining deglycosylation step. A model that can explain the observed results involves, in addition to the induced fit, a conformational change of the productive ES complex into a form that binds a second substrate molecule in a non-productive mode.

1985 ◽  
Vol 231 (1) ◽  
pp. 83-88 ◽  
Author(s):  
R Bicknell ◽  
S G Waley

The kinetics of the hydrolysis of two cephalosporins by β-lactamase I from Bacillus cereus 569/H/9 has been studied by single-turnover and steady-state methods. Single-turnover kinetics could be measured over the time scale of minutes when cephalosporin C was the substrate. The other substrate, 7-(2′,4′-dinitrophenylamino)deacetoxycephalosporanic acid, was hydrolysed even more slowly, and has potential for use in crystallographic studies of β-lactamases. Comparison of single-turnover and steady-state kinetics showed that, for both substrates, opening the β-lactam ring (i.e. acylation of the enzyme) was the rate-determining step. Thus the non-covalent enzyme-substrate complex is expected to be the intermediate observed crystallographically.


1970 ◽  
Vol 48 (12) ◽  
pp. 1793-1802 ◽  
Author(s):  
H. P. Kasserra ◽  
K. J. Laidler

The stopped-flow technique has been used to study the pre-steady-state kinetics of the hydrolysis of N-carbobenzoxy-L-alanine-p-nitrophenyl ester catalyzed by trypsin. By working under conditions such that the enzyme concentration is much greater than that of the substrate, it has been possible to measure [Formula: see text] the rate constant for the conversion of the enzyme-substrate complex into the acyl enzyme. The pH dependence of [Formula: see text] reveals a pKb′ value of 6.9 for the conversion of complex into acyl enzyme, in agreement with deductions from steady-state investigations. The pH dependence of [Formula: see text] (equal to k−1 + k2)/k1) has also been determined. The results provide direct evidence for the existence of an enzyme-substrate complex for this reaction.The work has been done in various mixtures of water and isopropyl alcohol. The logarithms of the rate constants [Formula: see text] and [Formula: see text] vary linearly with 1/D, showing a decrease with increasing alcohol concentration; [Formula: see text] increases with alcohol concentration. The solvent results suggest that addition of alcohol affects the hydrophobic bonding in the protein and leads to unfolding of the enzyme.


2000 ◽  
Vol 203 (1) ◽  
pp. 41-49 ◽  
Author(s):  
A.D. Vinogradov

H(+)-ATP synthase (F(1)F(o) ATPase) catalyzes the synthesis and/or hydrolysis of ATP, and the reactions are strongly affected by all the substrates (products) in a way clearly distinct from that expected of a simple reversibly operating enzyme. Recent studies have revealed the structure of F(1), which is ideally suited for the alternating binding change mechanism, with a rotating gamma-subunit as the energy-driven coupling device. According to this mechanism ATP, ADP, inorganic phosphate (P(i)) and Mg(2+) participate in the forward and reverse overall reactions exclusively as the substrates and products. However, both F(1) and F(1)F(o) demonstrate non-trivial steady-state and pre-steady-state kinetics as a function of variable substrate (product) concentrations. Several effectors cause unidirectional inhibition or activation of the enzyme. When considered separately, the unidirectional effects of ADP, P(i), Mg(2+) and energy supply on ATP synthesis or hydrolysis may possibly be explained by very complex kinetic schemes; taken together, the results suggest that different conformational states of the enzyme operate in the ATP hydrolase and ATP synthase reactions. A possible mechanism for an energy-dependent switch between the two states of F(1)F(o) ATPase is proposed.


1977 ◽  
Vol 55 (1) ◽  
pp. 19-26 ◽  
Author(s):  
R. James Maguire

Cellobiase has been isolated from the crude cellulase mixture of enzymes of Trichoderma viride using column chromatographic and ion-exchange methods. The steady-state kinetics of the hydrolysis of cellobiose have been investigated as a function of cellobiose and glucose concentrations, pH of the solution, temperature, and dielectric constant, using isopropanol–buffer mixtures. The results show that (i) there is a marked activation of the reaction by initial glucose concentrations of 4 × 10−3 M to 9 × 10−2 M and strong inhibition of the reaction at higher initial concentrations, (ii) the log rate – pH curve has a maximum at pH 5.2 and enzyme pK values of 3.5 and 6.8, (iii) the energy of activation at pH 5.1 is 10.2 kcal mol−1 over the temperature range 5–56 °C, and (iv) the rate decreases from 0 to 20% (v/v) isopropanol.The hydrolysis by cellobiase (EC 3.2.1.21) of p-nitrophenyl-β-D-glucoside was examined by pre-steady-state methods in which [Formula: see text], and by steady-state methods as a function of pH and temperature. The results show (i) a value for k2 of 21 s−1 at pH 7.0 (where k2 is the rate constant for the second step in the assumed two-intermediate mechanism [Formula: see text]) (ii) a log rate–pH curve, significantly different from that for hydrolysis of cellobiose, in which the rate increases with decreasing pH below pH 4.5, is constant in the region pH 4.5–6, and decreases above pH 6 (exhibiting an enzyme pK value of 7.3), and (iii) an activation energy of 12.5 kcal mol−1 at pH 5.7 over the temperature range 10–60 °C.


1969 ◽  
Vol 173 (1032) ◽  
pp. 411-420 ◽  

The theory of the kinetics of enzyme cascades is developed. Two types of cascades are recognized, one in which the products are stable ( open cascades ) and another in which the products are broken down ( damped cascades ). It is shown that it is a characteristic of a cascade that the final product appears after a certain lag phase. After this lag phase, the velocity of product formation can be very rapid. It is shown that whereas open cascades will always show a complicated time–product relation, damped cascades can under certain circumstances resemble a simple enzymic reaction. Because the relation between the over-all reaction velocity in the extrinsic coagulation cascade and the concentration of any of the proenzymes in this cascade is a hyperbolic one, it is concluded that this cascade is of the damped type rather than the open type.


1983 ◽  
Vol 211 (1) ◽  
pp. 237-242 ◽  
Author(s):  
G B Irvine ◽  
N L Blumsom ◽  
D T Elmore

1. Several peptides containing either of the sequences -Phe(NO2)-Trp- and -Phe(NO2)-Phe- and an uncharged hydrophilic group were synthesized, and the steady-state kinetics of their hydrolysis by pig pepsin (EC 3.4.23.1) and chicken liver cathepsin D (EC 3.4.23.5) were determined. Despite the presence of a hydrophilic group to increase substrate solubility, it was not possible to achieve the condition [S]0 much greater than Km, and, in some cases, only values of kcat./Km could be determined by measuring the first-order rate constant when [S]0 much less than Km. 2. Occupancy of the P2 and P3 sites considerably enhanced the specificity constant, and alanine was more effective than glycine at site P2. 3. The specificity constants for the hydrolysis by pepsin of those substrates in the present series that contain an amino acid residue at site P3 are considerably lower than for comparable substrates containing a cationic group. This difference does not apply to cathepsin D. 4. Hydrolyses with cathepsin D commonly exhibited a lag phase, and a possible explanation for this is given.


1982 ◽  
Vol 203 (1) ◽  
pp. 149-153 ◽  
Author(s):  
P R Levison ◽  
G Tomalin

Subsites in the S2-S4 region were identified in human plasma kallikrein. Kinetic constants (kcat., Km) were determined for a series of seven extended N-aminoacyl-L-arginine methyl esters based on the C-terminal sequence of bradykinin (-Pro-Phe-Arg) or (Gly)n-Arg. The rate-limiting step for the enzyme-catalysed reaction was found to be deacylation of the enzyme. It was possible to infer that hydrogen-bonded interactions occur between substrate and the S2-S4 region of kallikrein. Insertion of L-phenylalanine at residue P2 demonstrates that there is also a hydrophobic interaction with subsite S2, which stabilizes the enzyme-substrate complex. The strong interaction demonstrated between L-proline at residue P3 and subsite S3 is of greatest importance in the selectivity of human plasma kallikrein. The purification of kallikrein from Cohn fraction IV of human plasma is described making use of endogenous Factor XIIf to activate the prekallikrein. Kallikreins I (Mr 91 000) and II (Mr 85 000) were purified 170- and 110-fold respectively. Kallikrein I was used for the kinetic work.


1990 ◽  
Vol 265 (3) ◽  
pp. 899-902 ◽  
Author(s):  
T R Hawkes ◽  
T Lewis ◽  
J R Coggins ◽  
D M Mousdale ◽  
D J Lowe ◽  
...  

The pre-steady-state kinetics of phosphate formation from 5-enolpyruvylshikimate 3-phosphate catalysed by Escherichia coli chorismate synthase (EC 4.6.1.4) were studied by a rapid-acid-quench technique at 25 degrees C at pH 7.5. No pre-steady-state ‘burst’ or ‘lag’ phase was observed, showing that phosphate is released concomitant with the rate-limiting step of the enzyme. The implications of this result for the mechanism of action of chorismate synthase are discussed.


Sign in / Sign up

Export Citation Format

Share Document