scholarly journals NMDA receptors and L-arginine/nitric oxide/cyclic guanosine monophosphate pathway contribute to the antidepressant-like effect of Yueju pill in mice

2019 ◽  
Vol 39 (9) ◽  
Author(s):  
Wei Wang ◽  
Tong Zhou ◽  
Rong Jia ◽  
Hailou Zhang ◽  
Yi Zhang ◽  
...  

Abstract The present study aims to evaluate the involvement of N-methyl-d-aspartate receptor and nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) system in antidepressant-like effects of Yueju pill (YJ), a Chinese herbal medicine. The immobility time in tail suspension test (TST) and forced swim test (FST) was used to assess the antidepressant effects. Prior administration of L-arginine (750 mg/kg, intraperitoneal [i.p.]), a NO synthase substrate that enhances NO signaling or sildenafil (5 mg/kg, i.p.), a phosphodiesterase 5 inhibitor that enhances cGMP, blunted the antidepressant-like activity of YJ (2.7 g/kg, i.g.). Co-treatment of ineffective dose of YJ (1.35 g/kg, i.g.) with one of the reagents that suppress the NO/cGMP signaling, including methylene blue (10 mg/kg, i.p.), an inhibitor of NO synthase; 7-NI (7-nitroinidazole, 30 mg/kg, i.p.), an nNOS specific inhibitor; L-NAME (10 mg/kg, i.p.), a non-specific inhibitor of NO synthase; and MK-801 (0.05 mg/kg, i.p.), an NMDA receptor antagonist, reduced the immobility time in TST and FST, compared with those in vehicle or single drug treatment groups. Neither above drugs alone or co-administrated with YJ affected locomotor activity or anxiety behavior in open field test. Thus, our results suggest that the antidepressant-like action of YJ may depend on the inhibition of NMDA/NO/cGMP pathway.

2020 ◽  
Vol 16 (9) ◽  
pp. 1319-1327
Author(s):  
Ferdous Khan ◽  
Syed A. Kuddus ◽  
Md. H. Shohag ◽  
Hasan M. Reza ◽  
Murad Hossain

Background: An imbalance between pro-oxidants and antioxidants determines the level of oxidative stress which is implicated in the etiopathogenesis of various neuropsychiatric disorders including depression. Therefore, treatment with antioxidants could potentially improve the balance between pro-oxidants and antioxidants. Objective: The objective of this study was to evaluate the ability of astaxanthin, a potential antioxidant, to reduce reserpine-induced depression in BALB/c mice (Mus musculus). Methods: On the behavioral level, antidepressant property of astaxanthin (50 mg/kg, orally) on reserpine (2 mg/kg, subcutaneously) induced depressed mice was evaluated by Forced Swim Test (FST) and Tail Suspension Test (TST). In the biochemical level, the ability of astaxanthin to mitigate reserpine-induced oxidative stress was evaluated by the measurement of Malondialdehyde (MDA) and nitric oxide (NO) in brain, liver and plasma samples. On the other hand, the efficiency of astaxanthin to replenish glutathione depletion and antioxidant enzyme activity augmentation in the same samples were also investigated. Results: Astaxanthin was able to lower reserpine induced immobility time significantly (p<0.05) in FST and TST. Mice treated with astaxanthin showed significantly (p<0.05) low level of oxidative stress markers such as Malondialdehyde (MDA), Nitric Oxide (NO). Consistently, the level of reduced Glutathione (GSH), and the activity of Superoxide Dismutase (SOD) and catalase were augmented due to the oral administration of astaxanthin. Conclusion: This study suggests that astaxanthin reduces reserpine-induced oxidative stress and therefore might be effective in treating oxidative stress associated depression.


2011 ◽  
Vol 89 (2) ◽  
pp. 89-95 ◽  
Author(s):  
Ercan Ozdemir ◽  
Ihsan Bagcivan ◽  
Nedim Durmus ◽  
Ahmet Altun ◽  
Sinan Gursoy

Although the phenomenon of opioid tolerance has been widely investigated, neither opioid nor nonopioid mechanisms are completely understood. The aim of the present study was to investigate the role of the nitric oxide (NO)–cyclic guanosine monophosphate (cGMP) pathway in the development of morphine-induced analgesia tolerance. The study was carried out on male Wistar albino rats (weighing 180–210 g; n = 126). To develop morphine tolerance, animals were given morphine (50 mg/kg; s.c.) once daily for 3 days. After the last dose of morphine was injected on day 4, morphine tolerance was evaluated. The analgesic effects of 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1), BAY 41-2272, S-nitroso-N-acetylpenicillamine (SNAP), NG-nitro-l-arginine methyl ester (L-NAME), and morphine were considered at 15 or 30 min intervals (0, 15, 30, 60, 90, and 120 min) by tail-flick and hot-plate analgesia tests (n = 6 in each study group). The results showed that YC-1 and BAY 41-2272, a NO-independent activator of soluble guanylate cyclase (sGC), significantly increased the development and expression of morphine tolerance, and L-NAME, a NO synthase (NOS) inhibitor, significantly decreased the development of morphine tolerance. In conclusion, these data demonstrate that the nitric oxide–cGMP signal pathway plays a pivotal role in developing tolerance to the analgesic effect of morphine.


Hypertension ◽  
2020 ◽  
Vol 76 (4) ◽  
pp. 1055-1068
Author(s):  
Ehsan Ataei Ataabadi ◽  
Keivan Golshiri ◽  
Annika Jüttner ◽  
Guido Krenning ◽  
A.H. Jan Danser ◽  
...  

For the treatment of systemic hypertension, pharmacological intervention in nitric oxide-cyclic guanosine monophosphate signaling is a well-explored but unexploited option. In this review, we present the identified drug targets, including oxidases, mitochondria, soluble guanylyl cyclase, phosphodiesterase 1 and 5, and protein kinase G, important compounds that modulate them, and the current status of (pre)clinical development. The mode of action of these compounds is discussed, and based upon this, the clinical opportunities. We conclude that drugs that directly target the enzymes of the nitric oxide-cyclic guanosine monophosphate cascade are currently the most promising compounds, but that none of these compounds is under investigation as a treatment option for systemic hypertension.


1997 ◽  
Vol 86 (3) ◽  
pp. 689-698 ◽  
Author(s):  
Appavoo Rengasamy ◽  
Thomas N. Pajewski ◽  
Roger A. Johns

Background Inhalational anesthetics interact with the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway in the central nervous system (CNS) and attenuate excitatory neurotransmitter-induced cGMP concentration. The site of anesthetic action on the NO-cGMP pathway in the CNS remains controversial. This study investigated the effect of inhalational anesthetics on N-methyl-D-aspartate (NMDA)-stimulated NO synthase activity and cyclic cGMP production in rat cerebellum slices. Methods The interaction of inhalational anesthetics with NO synthase activation and cGMP concentration was determined in cerebellum slices of 10-day-old rats. Nitric oxide synthase activity in cerebellum slices was assessed by measuring the conversion of L-[3H]arginine to L-[3H]citrulline. The cGMP content of cerebellum slices was measured by radioimmunoassay. Results Isoflurane at 1.5% and 3% enhanced the NMDA-stimulated NO synthase activity by two times while halothane at 1.5% and 3% produced no significant effect. However, the NMDA-stimulated cGMP production was inhibited by both anesthetic agents. The anesthetic inhibition of cGMP accumulation was not significantly altered by a mixture of superoxide dismutase and catalase or by glycine, a coagonist of the NMDA receptor. Conclusions The enhancement of NMDA-induced NO synthase activity by isoflurane and the inhibition of NMDA-stimulated cGMP production by halothane and isoflurane suggests that inhalational anesthetics interfere with the neuronal NO-cGMP pathway. This inhibitory effect of anesthetics on cGMP accumulation is not due to either their interaction with the glycine binding site of the NMDA receptor or to the action of superoxide anions.


2006 ◽  
Vol 172 (2) ◽  
pp. 233-244 ◽  
Author(s):  
Addolorata Pisconti ◽  
Silvia Brunelli ◽  
Monica Di Padova ◽  
Clara De Palma ◽  
Daniela Deponti ◽  
...  

The mechanism of skeletal myoblast fusion is not well understood. We show that endogenous nitric oxide (NO) generation is required for myoblast fusion both in embryonic myoblasts and in satellite cells. The effect of NO is concentration and time dependent, being evident only at the onset of differentiation, and direct on the fusion process itself. The action of NO is mediated through a tightly regulated activation of guanylate cyclase and generation of cyclic guanosine monophosphate (cGMP), so much so that deregulation of cGMP signaling leads to a fusion-induced hypertrophy of satellite-derived myotubes and embryonic muscles, and to the acquisition of fusion competence by myogenic precursors in the presomitic mesoderm. NO and cGMP induce expression of follistatin, and this secreted protein mediates their action in myogenesis. These results establish a hitherto unappreciated role of NO and cGMP in regulating myoblast fusion and elucidate their mechanism of action, providing a direct link with follistatin, which is a key player in myogenesis.


2007 ◽  
Vol 97 (2) ◽  
pp. 1188-1195 ◽  
Author(s):  
Angélica Almanza ◽  
Francisco Navarrete ◽  
Rosario Vega ◽  
Enrique Soto

The structural elements of the nitric oxide–cyclic guanosine monophosphate (NO–cGMP) signaling pathway have been described in the vestibular peripheral system. However, the functions of NO in the vestibular endorgans are still not clear. We evaluated the action of NO on the Ca2+ currents in hair cells isolated from the semicircular canal crista ampullaris of the rat (P14–P18) by using the whole cell and perforated-cell patch-clamp technique. The NO donors 3-morpholinosydnonimine (SIN-1), sodium nitroprusside (SNP), and (±)-(E)-4-ethyl-2-[(Z)-hydroxyimino]-5-nitro-3-hexen-1-yl-nicotinamide (NOR-4) inhibited the Ca2+ current in hair cells in a voltage-independent manner. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO) prevented the inhibitory effect of SNP on the Ca2+ current. The selective inhibitor of the soluble form of the enzyme guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), also decreased the SNP-induced inhibition of the Ca2+ current. The membrane-permeant cGMP analogue 8-Br-cGMP mimicked the SNP effect. KT-5823, a specific inhibitor of cGMP-dependent protein kinase (PGK), prevented the inhibition of the Ca2+ current by SNP and 8-Br-cGMP. In the presence of N-ethylmaleimide (NEM), a sulfhydryl alkylating agent that prevents the S-nitrosylation reaction, the SNP effect on the Ca2+ current was significantly diminished. These results demonstrated that NO inhibits in a voltage-independent manner the voltage-activated Ca2+ current in rat vestibular hair cells by the activation of a cGMP-signaling pathway and through a direct action on the channel protein by a S-nitrosylation reaction. The inhibition of the Ca2+ current by NO may contribute to the regulation of the intracellular Ca2+ concentration and hair-cell synaptic transmission.


Sign in / Sign up

Export Citation Format

Share Document