Glucose: a direct or indirect precursor of hepatic glycogen synthesis in parenterally fed patients?

1989 ◽  
Vol 17 (5) ◽  
pp. 922-923
Author(s):  
RODERICK F. G. J. KING ◽  
DAVID ALEXANDER ◽  
MICHAEL J. McMAHON
Author(s):  
J. E. Michaels ◽  
J. T. Hung ◽  
E. L. Cardell ◽  
R. R. Cardell

In order to study early events of glycogen synthesis, we have used adrenalectomized (ADX) rats fasted overnight and injected with the synthetic glucocorticoid dexamethasone (DEX) to stimulate glycogen synthesis. Rats were given DEX 0-5 hr prior to sacrifice and injected with 2 mCi 3H-galactose 1 hr prior to sacrifice. Liver was prepared for light (LM) and electron microscopic (EM) radioautography by routine procedures.The concentration of silver grains over hepatic cytoplasm was measured in LM radioautographs using a Zeiss Videoplan. The hepatocytes were categorized as unlabeled if no silver grains (gr) were present, lightly labeled (<10gr/100 μm2 cytoplasm) or intensely labeled (>10 gr/1002 μm cytoplasm). Although very few hepatocytes showed heavy labeling after 1 hr treatment with DEX, by 2 hr after DEX treatment 8% of the cells distributed throughout the lobule were intensely labeled.


Author(s):  
J.E. Michaels ◽  
S.A. Garfield ◽  
J.T. Hung ◽  
S.S. Smith ◽  
R.R. Cardell

3H-galactose (gal) and 3H-glucose (glu) were compared to determine which compound was preferable for pulse labeling newly formed hepatic glycogen. Control fed rats were used to achieve substantial and consistent levels of hepatic glycogen and to stimulate glycogen synthesis.Rats fed once daily for 4 hr achieved hepatic glycogen levels > 3% wet weight liver prior to injection by tail vein of a tracer dose of 3H-gal or 3H-glu. The rats were sacrificed 15-120 min later and liver was prepared by routine techniques for light (LM) and electron microscopic (EM) radioautography (RAG) and biochemical analysis.


2021 ◽  
Vol 10 (4) ◽  
pp. 596
Author(s):  
Cristina Barosa ◽  
Rogério T. Ribeiro ◽  
Rita Andrade ◽  
João F. Raposo ◽  
John G. Jones

Dietary fructose overshadows glucose in promoting metabolic complications. Intestinal fructose metabolism (IFM) protects against these effects in rodents, by favoring gluconeogenesis, but the extent of IFM in humans is not known. We therefore aimed to infer the extent of IFM by comparing the contribution of dietary fructose to systemic glucose and hepatic glycogen appearance postprandially. Twelve fasting healthy subjects ingested two protein meals in random order, one supplemented with 50 g 5/95 fructose/glucose (LF) and the other with 50 g 55/45 fructose/glucose (HF). Sources of postprandial plasma glucose appearance and hepatic glycogen synthesis were determined with deuterated water. Plasma glucose excursions, as well as pre- and post-meal insulin, c-peptide, and triglyceride levels were nearly identical for both meals. The total gluconeogenic contribution to plasma glucose appearance was significantly higher for HF versus LF (65 ± 2% vs. 34 ± 3%, p < 0.001). For HF, Krebs cycle anaplerosis accounted for two-thirds of total gluconeogenesis (43 ± 2%) with one-third from Triose-P sources (22 ± 1%). With LF, three-quarters of the total gluconeogenic contribution originated via Krebs cycle anaplerosis (26 ± 2%) with one-quarter from Triose-P sources (9 ± 2%). HF and LF gave similar direct and indirect pathway contributions to hepatic glycogen synthesis. Increasing the fructose/glucose ratio had significant effects on glucose appearance sources but no effects on hepatic glycogen synthesis sources, consistent with extensive IFM. The majority of fructose carbons were converted to glucose via the Krebs cycle.


1976 ◽  
Vol 156 (3) ◽  
pp. 585-592 ◽  
Author(s):  
P D Whitton ◽  
D A Hems

1. A total loss of capacity for net glycogen synthesis was observed in experiments with the perfused liver of starved adrenalectomized rats. 2. This lesion was corrected by insulin or cortisol in vivo (over 2-5h), but not by any agent tested in perfusion. 3. The activity of glycogen synthetase a, and its increase during perfusion, in the presence of glucose plus glucogenic substrates, were proportional to the rate of net glycogen accumulation. 4. This complete inherent loss of capacity for glycogen synthesis after adrenalectomy is greater than any defect in hepatic metabolism yet reported in this situation, and is not explicable by a decrease in the rate of gluconegenesis (which supports glycogen synthesis in the liver of starved rats). The short-term (2-5h) stimulatory effect of glucocorticoids in the intact animal, on hepatic glycogen deposition, may be mediated partly through insulin action, although neither insulin or cortisol appear to act directly on the liver to stimulate glycogen synthesis.


1989 ◽  
Vol 159 (2) ◽  
pp. 522-527 ◽  
Author(s):  
Michael N. Goodman ◽  
Lorianne K. Masuoka ◽  
Jeffrey S. deRopp ◽  
A.Daniel Jones

1986 ◽  
Vol 251 (5) ◽  
pp. E584-E590 ◽  
Author(s):  
C. H. Lang ◽  
G. J. Bagby ◽  
H. L. Blakesley ◽  
J. L. Johnson ◽  
J. J. Spitzer

In the present study hepatic glycogenesis by the direct versus indirect pathway was determined as a function of the glucose infusion rate. Glycogen synthesis was examined in catheterized conscious rats that had been fasted 48 h before receiving a 3-h infusion (iv) of glucose. Glucose, containing tracer quantities of [U-14C]- and [6-3H]glucose, was infused at rates ranging from 0 to 230 mumol X min-1 X kg-1. Plasma concentrations of glucose, lactate, and insulin were positively correlated with the glucose infusion rate. Despite large changes in plasma glucose, lactate, and insulin concentrations, the rate of hepatic glycogen deposition (0.46 +/- 0.03 mumol X min-1 X g-1) did not vary significantly between glucose infusion rates of 20 and 230 mumol X min-1 X kg-1. However, the percent contribution of the direct pathway to glycogen repletion gradually increased from 13 +/- 2 to 74 +/- 4% in the lowest to the highest glucose infusion rates, with prevailing plasma glucose concentrations from 9.4 +/- 0.5 to 21.5 +/- 2.1 mM. Endogenous glucose production was depressed (by up to 40%), but not abolished by the glucose infusions. Only a small fraction (7-14%) of the infused glucose load was incorporated into liver glycogen via the direct pathway irrespective of the glucose infusion rate. Our data indicate that the relative contribution of the direct and indirect pathways of hepatic glycogen synthesis are dependent on the glucose load or plasma glucose concentration and emphasize the predominance of the indirect pathway of glycogenesis at plasma glucose concentrations normally observed after feeding.


1984 ◽  
Vol 247 (6) ◽  
pp. E714-E718
Author(s):  
M. Freemark ◽  
S. Handwerger

The interactions between ovine placental lactogen (oPL) and insulin in the regulation of fetal liver glycogen metabolism have been studied in cultured hepatocytes from fetal rats on day 20 of gestation. Both oPL (0.75–22.5 micrograms/ml) and insulin (0.01–1 microM) stimulated dose-dependent increases in [14C]glucose incorporation into glycogen. However, the dose-response curves for the two hormones were not parallel and the maximum effect of oPL was 3.4 times greater than that of insulin (P less than 0.001). The two hormones had synergistic effects on [14C]glucose incorporation at low concentrations and additive effects at maximum concentrations. Ovine growth hormone (oGH) also stimulated [14C]glucose incorporation into glycogen but with a potency only 12.3% that of oPL. Cycloheximide (20 microM) abolished the stimulation of [14C]glucose incorporation by insulin (1 microM), oPL (5 micrograms/ml), and oGH (100 micrograms/ml). Although the glycogenic actions of oPL and insulin may depend on new protein synthesis, the results of these studies suggest that these hormones stimulate glycogen synthesis in fetal liver by different mechanisms. Because the glycogenic actions of oPL are potentiated by insulin, these hormones may act in concert to promote hepatic glycogen storage in the fetus.


2020 ◽  
Vol 117 (12) ◽  
pp. 6733-6740 ◽  
Author(s):  
Thiago M. Batista ◽  
Sezin Dagdeviren ◽  
Shannon H. Carroll ◽  
Weikang Cai ◽  
Veronika Y. Melnik ◽  
...  

Insulin action in the liver is critical for glucose homeostasis through regulation of glycogen synthesis and glucose output. Arrestin domain-containing 3 (Arrdc3) is a member of the α-arrestin family previously linked to human obesity. Here, we show thatArrdc3is differentially regulated by insulin in vivo in mice undergoing euglycemic-hyperinsulinemic clamps, being highly up-regulated in liver and down-regulated in muscle and fat. Mice with liver-specific knockout (KO) of the insulin receptor (IR) have a 50% reduction inArrdc3messenger RNA, while, conversely, mice with liver-specific KO ofArrdc3(L-Arrdc3KO) have increased IR protein in plasma membrane. This leads to increased hepatic insulin sensitivity with increased phosphorylation of FOXO1, reduced expression of PEPCK, and increased glucokinase expression resulting in reduced hepatic glucose production and increased hepatic glycogen accumulation. These effects are due to interaction of ARRDC3 with IR resulting in phosphorylation of ARRDC3 on a conserved tyrosine (Y382) in the carboxyl-terminal domain. Thus,Arrdc3is an insulin target gene, and ARRDC3 protein directly interacts with IR to serve as a feedback regulator of insulin action in control of liver metabolism.


2007 ◽  
Vol 292 (4) ◽  
pp. R1400-R1407 ◽  
Author(s):  
Dalila Azzout-Marniche ◽  
Claire Gaudichon ◽  
Clémence Blouet ◽  
Cécile Bos ◽  
Véronique Mathé ◽  
...  

This paper provides molecular evidence for a liver glyconeogenic pathway, that is, a concomitant activation of hepatic gluconeogenesis and glycogenesis, which could participate in the mechanisms that cope with amino acid excess in high-protein (HP) fed rats. This evidence is based on the concomitant upregulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression, downregulation of glucose 6-phosphatase catalytic subunit (G6PC1) gene expression, an absence of glucose release from isolated hepatocytes and restored hepatic glycogen stores in the fed state in HP fed rats. These effects are mainly due to the ability of high physiological concentrations of portal blood amino acids to counteract glucagon-induced liver G6PC1 but not PEPCK gene expression. These results agree with the idea that the metabolic pathway involved in glycogen synthesis is dependent upon the pattern of nutrient availability. This nonoxidative glyconeogenic disposal pathway of gluconeogenic substrates copes with amino excess and participates in adjusting both amino acid and glucose homeostasis. In addition, the pattern of PEPCK and G6PC1 gene expression provides evidence that neither the kidney nor the small intestine participated in gluconeogenic glucose production under our experimental conditions. Moreover, the main glucose-6-phosphatase (G6Pase) isoform expressed in the small intestine is the ubiquitous isoform of G6Pase (G6PC3) rather than the G6PC1 isoform expressed in gluconeogenic organs.


Sign in / Sign up

Export Citation Format

Share Document