Structure and function studies of plant cell wall polysaccharides

1994 ◽  
Vol 22 (2) ◽  
pp. 374-378 ◽  
Author(s):  
Peter Albersheim ◽  
Jinhua An ◽  
Glenn Freshour ◽  
Melvin S. Fuller ◽  
Rafael Guillen ◽  
...  
1985 ◽  
Vol 1985 (Supplement 2) ◽  
pp. 203-217 ◽  
Author(s):  
A. G. DARVILL ◽  
P. ALBERSHEIM ◽  
M. McNEIL ◽  
J. M. LAU ◽  
W. S. YORK ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Svenning Rune Møller ◽  
Xueying Yi ◽  
Silvia Melina Velásquez ◽  
Sascha Gille ◽  
Pernille Louise Munke Hansen ◽  
...  

Abstract Extensins are plant cell wall glycoproteins that act as scaffolds for the deposition of the main wall carbohydrate polymers, which are interlocked into the supramolecular wall structure through intra- and inter-molecular iso-di-tyrosine crosslinks within the extensin backbone. In the conserved canonical extensin repeat, Ser-Hyp4, serine and the consecutive C4-hydroxyprolines (Hyps) are substituted with an α-galactose and 1–5 β- or α-linked arabinofuranoses (Arafs), respectively. These modifications are required for correct extended structure and function of the extensin network. Here, we identified a single Arabidopsis thaliana gene, At3g57630, in clade E of the inverting Glycosyltransferase family GT47 as a candidate for the transfer of Araf to Hyp-arabinofuranotriose (Hyp-β1,4Araf-β1,2Araf-β1,2Araf) side chains in an α-linkage, to yield Hyp-Araf 4 which is exclusively found in extensins. T-DNA knock-out mutants of At3g57630 showed a truncated root hair phenotype, as seen for mutants of all hitherto characterized extensin glycosylation enzymes; both root hair and glycan phenotypes were restored upon reintroduction of At3g57630. At3g57630 was named Extensin Arabinose Deficient transferase, ExAD, accordingly. The occurrence of ExAD orthologs within the Viridiplantae along with its’ product, Hyp-Araf 4, point to ExAD being an evolutionary hallmark of terrestrial plants and charophyte green algae.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1263
Author(s):  
David Stuart Thompson ◽  
Azharul Islam

The extensibility of synthetic polymers is routinely modulated by the addition of lower molecular weight spacing molecules known as plasticizers, and there is some evidence that water may have similar effects on plant cell walls. Furthermore, it appears that changes in wall hydration could affect wall behavior to a degree that seems likely to have physiological consequences at water potentials that many plants would experience under field conditions. Osmotica large enough to be excluded from plant cell walls and bacterial cellulose composites with other cell wall polysaccharides were used to alter their water content and to demonstrate that the relationship between water potential and degree of hydration of these materials is affected by their composition. Additionally, it was found that expansins facilitate rehydration of bacterial cellulose and cellulose composites and cause swelling of plant cell wall fragments in suspension and that these responses are also affected by polysaccharide composition. Given these observations, it seems probable that plant environmental responses include measures to regulate cell wall water content or mitigate the consequences of changes in wall hydration and that it may be possible to exploit such mechanisms to improve crop resilience.


Sign in / Sign up

Export Citation Format

Share Document