Lipoxygenase isoforms in elicitor-treated parsley cell suspension cultures

2000 ◽  
Vol 28 (6) ◽  
pp. 827-829 ◽  
Author(s):  
C. Noehringer ◽  
D. Scheel ◽  
E. Blée

Treatment of parsley cell cultures with a fungal elicitor triggered the induction of a lipoxygenase isoform which may be involved in the de novo synthesis of defence-response inducers, such as jasmonic acid or 12-oxo-phytodienoic acid.

2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 446-448 ◽  
Author(s):  
J. Koehl ◽  
E.F. Elstner ◽  
W. Oßwald ◽  
I. Heiser

Mode of action of β-quercinin, a novel elicitin on tobacco cell suspension cultures (cvs. Bel B and Bel W3) was investigated by measuring the oxidative burst and cell death in these cell cultures. β-quercinin induced an oxidative burst comparable to that excited by zoospores from P. quercina. Adding superoxidedismutase, catalase and diphenyleneiodonium to elicited cell cultures, it could be demonstrated, that the induction of cell death in tobacco cell cultures is not correlated to the oxidative burst.


1987 ◽  
Vol 42 (1-2) ◽  
pp. 33-40 ◽  
Author(s):  
Wolfram Förster ◽  
Hans Becker

Abstract Four plant bioregulators were tested for their effects on production of valepotriates in Valeriana wallichii and Fedia cornucopiae cell suspension cultures. Concentrations of more than 10 ppm reduced valepotriate yield. At lower concentrations production was increased. For optimal activity, bioregulators had to be applied during early exponential growth, up to day 8 of the growth cycle. At equimolar concentrations dim ethylm orpholinium bromide (4 ppm) and dimethylpiperidinium chloride (3 ppm) significantly im proved total valepotriates in V. wallichii (up to 23%) and in F cornucupiae (up to 50% ) 2-(3,4-dichlorophenoxy ) - triethylamine (6 ppm ) and 2-(3,5-diisopropylphenoxy)-triethylam ine (6.4 ppm) increased valepotriate production in both cell cultures up to 40%. With dimethylpiperidinium chloride and dimethylmorpholinium bromide the ratio of m onoene to diene valepotriates in both cell systems was significantly shifted to the m onoene com pounds. A general use of these bioregulators to increase production of terpenoid secondary m etabolites in plant tissue cultures is indicated.


1988 ◽  
Vol 43 (11-12) ◽  
pp. 843-849 ◽  
Author(s):  
Dieter Komoßa ◽  
Wolfgang Barz

Abstract A degradation product of nicotinic acid representing the pyridine carbon skeleton was isolated and purified from parsley cell suspension cultures after incubation with [6-14C]nicotinic acid for 70 h. The catabolite was identified as glutaric acid by means of spectroscopic (GC-MS and 1H NMR) and chromatographic (TLC, HPLC) techniques. Glutaric acid when applied to parsley cell cultures was readily degraded to CO2 but intermediate products could not be identified.


Sign in / Sign up

Export Citation Format

Share Document