Exploring the involvement of jasmonates in rice plant self defense mechanism- Identification of jasmonic acid induced defense-related and cellular protectant proteins

2000 ◽  
Vol 28 (5) ◽  
pp. A467-A467
Author(s):  
Randeep Rakwal ◽  
Setsuko Komatsu
2021 ◽  
Author(s):  
JANGHO LEE ◽  
Kyoungshik Cho ◽  
Hyejin Kook ◽  
Suman Kang ◽  
Yunsung Lee ◽  
...  

Abstract Among numerous studies on COVID-19, we noted that the infection and mortality rates of SARS-CoV-2 increased with age and that fetuses known to be particularly susceptible to infection were better protected despite various mutations. Hence, we established the hypothesis that a new immune system exists that forms before birth and decreases with aging. To prove this, we analyzed the components from early pregnancy fetal stem cells cultivated in various ex-vivo culture conditions simulating the environment during pregnancy. Resultingly, we confirmed that IgM, a natural antibody produced only in early B-1 cells, immunoglobulins including IgG3, which has a wide range of antigen-binding capacity and affinity, complement proteins, and antiviral proteins are induced. Our results suggest that fetal stem cells can form an independent immune system responding to unlearned antigens as a self-defense mechanism before establishing mature immune systems. Moreover, we propose the possibility of new solutions to cope with various infectious diseases based on the factors therein.


2019 ◽  
Vol 10 (1) ◽  
pp. 75-91 ◽  
Author(s):  
Rohit Kumar Sachan ◽  
Dharmender Singh Kushwaha

This article describes how nature-inspired algorithms (NIAs) have evolved as efficient approaches for addressing the complexities inherent in the optimization of real-world applications. These algorithms are designed to imitate processes in nature that provide some ways of problem solving. Although various nature-inspired algorithms have been proposed by various researchers in the past, a robust and computationally simple NIA is still missing. A novel nature-inspired algorithm that adapts to the anti-predatory behavior of the frog is proposed. The algorithm mimics the self defense mechanism of a frog. Frogs use their reflexes as a means of protecting themselves from the predators. A mathematical formulation of these reflexes forms the core of the proposed approach. The robustness of the proposed algorithm is verified through performance evaluation on sixteen different unconstrained mathematical benchmark functions based on best and worst values as well as mean and standard deviation of the computed results. These functions are representative of different properties and characteristics of the problem domain. The strength and robustness of the proposed algorithm is established through a comparative result analysis with six well-known optimization algorithms, namely: genetic, particle swarm, differential evolution, artificial bee colony, teacher learning and Jaya. The Friedman rank test and the Holm-Sidak test have been used for statistical analysis of obtained results. The proposed algorithm ranks first in the case of mean result and scores second rank in the case of “standard deviation”. This proves the significance of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document