Interprotein interactions are responsible for the confined diffusion of a G-protein-coupled receptor at the cell surface

2003 ◽  
Vol 31 (5) ◽  
pp. 1001-1005 ◽  
Author(s):  
F. Daumas ◽  
N. Destainville ◽  
C. Millot ◽  
A. Lopez ◽  
D. Dean ◽  
...  

The monitoring of the movements of membrane proteins (or lipids) by single-particle tracking enables one to obtain reliable insights into the complex dynamic organization of the plasma membrane constituents. Using this technique, we investigated the diffusional behaviour of a G-protein-coupled receptor. The trajectories of the receptors revealed a diffusion mode combining a short-term rapid confined diffusion with a long-term slow diffusion. A detailed statistical analysis shows that the receptors have a diffusion confined to a domain which itself diffuses, the confinement being due to long-range attractive inter-protein interactions. The existing models of the dynamic organization of the cell membrane cannot explain our results. We propose a theoretical Brownian model of interacting proteins that is consistent with the experimental observations and accounts for the variations found as a function of the domain size of the short-term and long-term diffusion coefficients.

2021 ◽  
Author(s):  
Shucai Xie ◽  
Xili Jiang ◽  
Desislava Met Doycheva ◽  
Hui Shi ◽  
Peng Jin ◽  
...  

Abstract Background: Hypoxic-ischemic encephalopathy (HIE) is a severe anoxic brain injury that leads to premature mortality or long-term disabilities in infants. Neuroinflammation is a vital contributor to the pathogenic cascade post HIE and a mediator to secondary neuronal death. As a plasma membrane G-protein coupled receptor, GPR39, exhibits anti-inflammatory activity in several diseases. This study aimed to explore the neuroprotective function of GPR39 through inhibition of inflammation post hypoxic-ischemic (HI) injury and to elaborate the contribution of sirtuin 1(SIRT1)/ peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)/ nuclear factor, erythroid 2 like 2(Nrf2) in G protein-coupled receptor 39 (GPR39)-mediated protection.Methods: A total of 206 10-day old Sprague Dawley rat pups were subjected to HIE or sham surgery. TC-G 1008 was administered intranasally at 1h, 25h, 49h, and 73h post HIE induction. SIRT1 inhibitor EX527, GPR39 CRISPR, and PGC-1α CRISPR were administered to elucidate the underlying mechanisms. Brain infarct area, short-term and long-term neurobehavioral tests, Nissl staining, western blot, and immunofluorescence staining were performed post HIE.Results: The expression of GPR39 and pathway-related proteins, SIRT1、PGC-1α and Nrf2 were increased in a time-dependent manner, peaking at 24 h or 48h post HIE. Intranasal administration of TC-G 1008 reduced the percent infarcted area and improved short-term and long-term neurological deficits. Moreover, TC-G 1008 treatment significantly increased the expression of SIRT1, PGC-1α, Nrf2, IL-6, IL-1β, and TNF-α. GPR39 CRISPR EX527 and PGC-1α CRISPR abolished GPR39’s neuroprotective effects post HIE.Conclusions:TC-G 1008 attenuated neuroinflammation in part via the SIRT1/PGC-1α/Nrf2 pathway in a neonatal rat model of HIE. TC-G 1008 may be a novel therapeutic target for treatment post neonatal HIE injury.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Shucai Xie ◽  
Xili Jiang ◽  
Desislava Met Doycheva ◽  
Hui Shi ◽  
Peng Jin ◽  
...  

Abstract Background Hypoxic–ischemic encephalopathy (HIE) is a severe anoxic brain injury that leads to premature mortality or long-term disabilities in infants. Neuroinflammation is a vital contributor to the pathogenic cascade post-HIE and a mediator to secondary neuronal death. As a plasma membrane G-protein-coupled receptor, GPR39, exhibits anti-inflammatory activity in several diseases. This study aimed to explore the neuroprotective function of GPR39 through inhibition of inflammation post-hypoxic–ischemic (HI) injury and to elaborate the contribution of sirtuin 1(SIRT1)/peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)/nuclear factor, erythroid 2 like 2(Nrf2) in G-protein-coupled receptor 39 (GPR39)-mediated protection. Methods A total of 206 10-day-old Sprague Dawley rat pups were subjected to HIE or sham surgery. TC-G 1008 was administered intranasally at 1 h, 25 h, 49 h, and 73 h post-HIE induction. SIRT1 inhibitor EX527, GPR39 CRISPR, and PGC-1α CRISPR were administered to elucidate the underlying mechanisms. Brain infarct area, short-term and long-term neurobehavioral tests, Nissl staining, western blot, and immunofluorescence staining were performed post-HIE. Results The expression of GPR39 and pathway-related proteins, SIRT1, PGC-1α and Nrf2 were increased in a time-dependent manner, peaking at 24 h or 48-h post-HIE. Intranasal administration of TC-G 1008 reduced the percent infarcted area and improved short-term and long-term neurological deficits. Moreover, TC-G 1008 treatment significantly increased the expression of SIRT1, PGC-1α and Nrf2, but downregulated the expressions of IL-6, IL-1β, and TNF-α. GPR39 CRISPR EX527 and PGC-1α CRISPR abolished GPR39’s neuroprotective effects post-HIE. Conclusions TC-G 1008 attenuated neuroinflammation in part via the SIRT1/PGC-1α/Nrf2 pathway in a neonatal rat model of HIE. TC-G 1008 may be a novel therapeutic target for treatment post-neonatal HIE injury.


2021 ◽  
Vol 22 (6) ◽  
pp. 3241
Author(s):  
Raudah Lazim ◽  
Donghyuk Suh ◽  
Jai Woo Lee ◽  
Thi Ngoc Lan Vu ◽  
Sanghee Yoon ◽  
...  

G protein-coupled receptor (GPCR) oligomerization, while contentious, continues to attract the attention of researchers. Numerous experimental investigations have validated the presence of GPCR dimers, and the relevance of dimerization in the effectuation of physiological functions intensifies the attractiveness of this concept as a potential therapeutic target. GPCRs, as a single entity, have been the main source of scrutiny for drug design objectives for multiple diseases such as cancer, inflammation, cardiac, and respiratory diseases. The existence of dimers broadens the research scope of GPCR functions, revealing new signaling pathways that can be targeted for disease pathogenesis that have not previously been reported when GPCRs were only viewed in their monomeric form. This review will highlight several aspects of GPCR dimerization, which include a summary of the structural elucidation of the allosteric modulation of class C GPCR activation offered through recent solutions to the three-dimensional, full-length structures of metabotropic glutamate receptor and γ-aminobutyric acid B receptor as well as the role of dimerization in the modification of GPCR function and allostery. With the growing influence of computational methods in the study of GPCRs, we will also be reviewing recent computational tools that have been utilized to map protein–protein interactions (PPI).


2017 ◽  
Vol 114 (51) ◽  
pp. 13453-13458 ◽  
Author(s):  
John J. Skinner ◽  
Sheng Wang ◽  
Jiyoung Lee ◽  
Colin Ong ◽  
Ruth Sommese ◽  
...  

Phosphorylation is a major regulator of protein interactions; however, the mechanisms by which regulation occurs are not well understood. Here we identify a salt-bridge competition or “theft” mechanism that enables a phospho-triggered swap of protein partners by Raf Kinase Inhibitory Protein (RKIP). RKIP transitions from inhibiting Raf-1 to inhibiting G-protein–coupled receptor kinase 2 upon phosphorylation, thereby bridging MAP kinase and G-Protein–Coupled Receptor signaling. NMR and crystallography indicate that a phosphoserine, but not a phosphomimetic, competes for a lysine from a preexisting salt bridge, initiating a partial unfolding event and promoting new protein interactions. Structural elements underlying the theft occurred early in evolution and are found in 10% of homo-oligomers and 30% of hetero-oligomers including Bax, Troponin C, and Early Endosome Antigen 1. In contrast to a direct recognition of phosphorylated residues by binding partners, the salt-bridge theft mechanism represents a facile strategy for promoting or disrupting protein interactions using solvent-accessible residues, and it can provide additional specificity at protein interfaces through local unfolding or conformational change.


2010 ◽  
Vol 6 (7) ◽  
pp. 541-548 ◽  
Author(s):  
Jianxin Hu ◽  
Yan Wang ◽  
Xiaohong Zhang ◽  
John R Lloyd ◽  
Jian Hua Li ◽  
...  

2018 ◽  
Author(s):  
Benjamin A. Krishna ◽  
Monica S. Humby ◽  
William E. Miller ◽  
Christine M. O’Connor

AbstractHuman cytomegalovirus (HCMV) is a ubiquitous pathogen that undergoes latency in cells of the hematopoietic compartment, though the mechanisms underlying establishment and maintenance of latency remain elusive. We previously reported that the HCMV-encoded G-protein coupled receptor (GPCR) homolog,US28is required for successful latent infection. We now show that US28 protein (pUS28) providedin transcomplements the US28Δ lytic phenotype in myeloid cells, suggesting that sustained US28 expression is necessary for long-term latency. Furthermore, expression of pUS28 at the time of infection represses transcription from the major immediate early promoter (MIEP) within 24 hours. However, this repression is only maintained in the presence of continual pUS28 expression providedin trans. Our data also reveal that pUS28-mediated signaling attenuates both expression and phosphorylation of cellular fos (c-fos), an AP-1 transcription factor subunit, to repress MIEP-driven transcription. AP-1 binds to the MIEP and promotes lytic replication, and in line with this, we find that US28Δ infection results in an increase in AP-1 binding to the MIEP, compared to wild type latent infection. Pharmacological inhibition of c-fos represses the MIEP during US28Δ infection to similar levels we observe during wild type latent infection. Together, our data reveal that US28 is required for both establishment and long-term maintenance of HCMV latency, which is modulated, at least in part, by repressing functional AP-1 binding to the MIEP.Significance StatementHuman cytomegalovirus (HCMV) is a wise-spread pathogen that remains with an individual for life in a quiescent/latent state, posing little threat to an otherwise healthy person. However, when an individual’s immune system is severely compromised, HCMV can reactivate to its active/lytic state, resulting in viral spread and disease that is often fatal. The biological mechanisms underlying HCMV latency and reactivation remain poorly understood. Herein we show that the viral-encoded G-protein coupled receptor (GPCR)US28aids in the establishment and the maintenance of viral latency. Furthermore, we find that US28 modulates host cell proteins to suppress viral processes associated with active/lytic replication, thereby promoting latent infection. This work provides mechanism by which HCMV modulates the host cell environment to its advantage.


Sign in / Sign up

Export Citation Format

Share Document