Getting through anaphase: splitting the sisters and beyond

2010 ◽  
Vol 38 (6) ◽  
pp. 1639-1644 ◽  
Author(s):  
Raquel A. Oliveira ◽  
Kim Nasmyth

Sister-chromatid cohesion, thought to be primarily mediated by the cohesin complex, is essential for chromosome segregation. The forces holding the two sisters resist the tendency of microtubules to prematurely pull sister DNAs apart and thereby prevent random segregation of the genome during mitosis, and consequent aneuploidy. By counteracting the spindle pulling forces, cohesion between the two sisters generates the tension necessary to stabilize microtubule–kinetochore attachments. Upon entry into anaphase, however, the linkages that hold the two sister DNAs must be rapidly destroyed to allow physical separation of chromatids. Anaphase cells must therefore possess mechanisms that ensure faithful segregation of single chromatids that are now attached stably to the spindle in a manner no longer dependent on tension. In the present review, we discuss the nature of the cohesive forces that hold sister chromatids together, the mechanisms that trigger their physical separation, and the anaphase-specific changes that ensure proper segregation of single chromatids during the later stages of mitosis.

Open Biology ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 150178 ◽  
Author(s):  
Maria Ocampo-Hafalla ◽  
Sofía Muñoz ◽  
Catarina P. Samora ◽  
Frank Uhlmann

The ring-shaped cohesin complex is thought to topologically hold sister chromatids together from their synthesis in S phase until chromosome segregation in mitosis. How cohesin stably binds to chromosomes for extended periods, without impeding other chromosomal processes that also require access to the DNA, is poorly understood. Budding yeast cohesin is loaded onto DNA by the Scc2–Scc4 cohesin loader at centromeres and promoters of active genes, from where cohesin translocates to more permanent places of residence at transcription termination sites. Here we show that, at the GAL2 and MET17 loci, pre-existing cohesin is pushed downstream along the DNA in response to transcriptional gene activation, apparently without need for intermittent dissociation or reloading. We observe translocation intermediates and find that the distribution of most chromosomal cohesin is shaped by transcription. Our observations support a model in which cohesin is able to slide laterally along chromosomes while maintaining topological contact with DNA. In this way, stable cohesin binding to DNA and enduring sister chromatid cohesion become compatible with simultaneous underlying chromosomal activities, including but maybe not limited to transcription.


2015 ◽  
Vol 2 (2) ◽  
pp. 150029 ◽  
Author(s):  
Mary Brady ◽  
Leocadia V. Paliulis

The challenge of cell division is to distribute partner chromosomes (pairs of homologues, pairs of sex chromosomes or pairs of sister chromatids) correctly, one into each daughter cell. In the ‘standard’ meiosis, this problem is solved by linking partners together via a chiasma and/or sister chromatid cohesion, and then separating the linked partners from one another in anaphase; thus, the partners are kept track of, and correctly distributed. Many organisms, however, properly separate chromosomes in the absence of any obvious physical connection, and movements of unconnected partner chromosomes are coordinated at a distance. Meiotic distance interactions happen in many different ways and in different types of organisms. In this review, we discuss several different known types of distance segregation and propose possible explanations for non-random segregation of distance-segregating chromosomes.


2021 ◽  
Author(s):  
Yu Liu ◽  
Job Dekker

The ring-like cohesin complex mediates sister chromatid cohesion by encircling pairs of sister chromatids. Cohesin also extrudes loops along chromatids. Whether the two activities involve similar mechanisms of DNA engagement is not known. We implemented an experimental approach based on isolated nuclei carrying engineered cleavable RAD21 proteins to precisely control cohesin ring integrity so that its role in chromatin looping could be studied under defined experimental conditions. This approach allowed us to identify cohesin complexes with distinct biochemical, and possibly structural properties, that mediate different sets of chromatin loops. When RAD21 is cleaved and the cohesin ring is opened, cohesin complexes at CTCF sites are released from DNA and loops at these elements are lost. In contrast, cohesin-dependent loops within chromatin domains and that are not anchored at CTCF sites are more resistant to RAD21 cleavage. The results show that the cohesin complex mediates loops in different ways depending on genomic context and suggests that it undergoes structural changes as it dynamically extrudes and encounters CTCF sites.


2018 ◽  
Vol 29 (15) ◽  
pp. 1811-1824 ◽  
Author(s):  
Hem Sapkota ◽  
Emilia Wasiak ◽  
John R. Daum ◽  
Gary J. Gorbsky

Cells delayed in metaphase with intact mitotic spindles undergo cohesion fatigue, where sister chromatids separate asynchronously, while cells remain in mitosis. Cohesion fatigue requires release of sister chromatid cohesion. However, the pathways that breach sister chromatid cohesion during cohesion fatigue remain unknown. Using moderate-salt buffers to remove loosely bound chromatin cohesin, we show that “cohesive” cohesin is not released during chromatid separation during cohesion fatigue. Using a regulated protein heterodimerization system to lock different cohesin ring interfaces at specific times in mitosis, we show that the Wapl-mediated pathway of cohesin release is not required for cohesion fatigue. By manipulating microtubule stability and cohesin complex integrity in cell lines with varying sensitivity to cohesion fatigue, we show that rates of cohesion fatigue reflect a dynamic balance between spindle pulling forces and resistance to separation by interchromatid cohesion. Finally, while massive separation of chromatids in cohesion fatigue likely produces inviable cell progeny, we find that short metaphase delays, leading to partial chromatid separation, predispose cells to chromosome missegregation. Thus, complete separation of one or a few chromosomes and/or partial separation of sister chromatids may be an unrecognized but common source of chromosome instability that perpetuates the evolution of malignant cells in cancer.


2007 ◽  
Vol 178 (3) ◽  
pp. 345-354 ◽  
Author(s):  
Kerstin H. Thein ◽  
Julia Kleylein-Sohn ◽  
Erich A. Nigg ◽  
Ulrike Gruneberg

Faithful chromosome segregation in mitosis requires the formation of a bipolar mitotic spindle with stably attached chromosomes. Once all of the chromosomes are aligned, the connection between the sister chromatids is severed by the cysteine protease separase. Separase also promotes centriole disengagement at the end of mitosis. Temporal coordination of these two activities with the rest of the cell cycle is required for the successful completion of mitosis. In this study, we report that depletion of the microtubule and kinetochore protein astrin results in checkpoint-arrested cells with multipolar spindles and separated sister chromatids, which is consistent with untimely separase activation. Supporting this idea, astrin-depleted cells contain active separase, and separase depletion suppresses the premature sister chromatid separation and centriole disengagement in these cells. We suggest that astrin contributes to the regulatory network that controls separase activity.


Genetics ◽  
1999 ◽  
Vol 153 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Michelle D Krawchuk ◽  
Wayne P Wahls

AbstractRecent evidence suggests that the position of reciprocal recombination events (crossovers) is important for the segregation of homologous chromosomes during meiosis I and sister chromatids during meiosis II. We developed genetic mapping functions that permit the simultaneous analysis of centromere-proximal crossover recombination and the type of segregation error leading to aneuploidy. The mapping functions were tested in a study of the rec8, rec10, and rec11 mutants of fission yeast. In each mutant we monitored each of the three chromosome pairs. Between 38 and 100% of the chromosome segregation errors in the rec8 mutants were due to meiosis I nondisjunction of homologous chromosomes. The remaining segregation errors were likely the result of precocious separation of sister chromatids, a previously described defect in the rec8 mutants. Between 47 and 100% of segregation errors in the rec10 and rec11 mutants were due to nondisjunction of sister chromatids during meiosis II. In addition, centromere-proximal recombination was reduced as much as 14-fold or more on chromosomes that had experienced nondisjunction. These results demonstrate the utility of the new mapping functions and support models in which sister chromatid cohesion and crossover position are important determinants for proper chromosome segregation in each meiotic division.


2021 ◽  
Author(s):  
Rachael E Barton ◽  
Lucia F Massari ◽  
Daniel Robertson ◽  
Adele L Marston

Cohesin organizes the genome by forming intra-chromosomal loops and inter-sister chromatid linkages. During gamete formation by meiosis, chromosomes are reshaped to support crossover recombination and two consecutive rounds of chromosome segregation. Here we show that Eco1 acetyltransferase positions both chromatin loops and sister chromatid cohesion to organize meiotic chromosomes into functional domains in budding yeast. Eco1 acetylates the Smc3 cohesin subunit in meiotic S phase to establish chromatin boundaries, independently of DNA replication. Boundary formation by Eco1 is critical for prophase exit and for the maintenance of cohesion until meiosis II, but is independent of the ability of Eco1 to antagonize the cohesin-release factor, Wpl1. Conversely, prevention of cohesin release by Wpl1 is essential for centromeric cohesion, kinetochore monoorientation and co-segregation of sister chromatids in meiosis I. Our findings establish Eco1 as a key determinant of chromatin boundaries and cohesion positioning, revealing how local chromosome structuring directs genome transmission into gametes.


2001 ◽  
Vol 155 (5) ◽  
pp. 711-718 ◽  
Author(s):  
Fedor Severin ◽  
Anthony A. Hyman ◽  
Simonetta Piatti

At the metaphase to anaphase transition, chromosome segregation is initiated by the splitting of sister chromatids. Subsequently, spindles elongate, separating the sister chromosomes into two sets. Here, we investigate the cell cycle requirements for spindle elongation in budding yeast using mutants affecting sister chromatid cohesion or DNA replication. We show that separation of sister chromatids is not sufficient for proper spindle integrity during elongation. Rather, successful spindle elongation and stability require both sister chromatid separation and anaphase-promoting complex activation. Spindle integrity during elongation is dependent on proteolysis of the securin Pds1 but not on the activity of the separase Esp1. Our data suggest that stabilization of the elongating spindle at the metaphase to anaphase transition involves Pds1-dependent targets other than Esp1.


2015 ◽  
Vol 26 (23) ◽  
pp. 4224-4235 ◽  
Author(s):  
Thomas Eng ◽  
Vincent Guacci ◽  
Douglas Koshland

The cohesin complex (Mcd1p, Smc1p, Smc3p, and Scc3p) has multiple roles in chromosome architecture, such as promoting sister chromatid cohesion, chromosome condensation, DNA repair, and transcriptional regulation. The prevailing embrace model for sister chromatid cohesion posits that a single cohesin complex entraps both sister chromatids. We report interallelic complementation between pairs of nonfunctional mcd1 alleles (mcd1-1 and mcd1-Q266) or smc3 alleles (smc3-42 and smc3-K113R). Cells bearing individual mcd1 or smc3 mutant alleles are inviable and defective for both sister chromatid cohesion and condensation. However, cells coexpressing two defective mcd1 or two defective smc3 alleles are viable and have cohesion and condensation. Because cohesin contains only a single copy of Smc3p or Mcd1p, these examples of interallelic complementation must result from interplay or communication between the two defective cohesin complexes, each harboring one of the mutant allele products. Neither mcd1-1p nor smc3-42p is bound to chromosomes when expressed individually at its restrictive temperature. However, their chromosome binding is restored when they are coexpressed with their chromosome-bound interallelic complementing partner. Our results support a mechanism by which multiple cohesin complexes interact on DNA to mediate cohesion and condensation.


2017 ◽  
Author(s):  
Ziva Misulovin ◽  
Michelle Pherson ◽  
Maria Gause ◽  
Dale Dorsett

AbstractThe cohesin complex topologically encircles chromosomes and mediates sister chromatid cohesion to ensure accurate chromosome segregation upon cell division. Cohesin also participates in DNA repair and gene transcription. The Nipped-B – Mau2 protein complex loads cohesin onto chromosomes and the Pds5 - Wapl complex removes cohesin. Pds5 is also essential for sister chromatid cohesion, indicating that it has functions beyond cohesin removal. The Brca2 DNA repair protein interacts with Pds5, but the roles of this complex beyond DNA repair are unknown. Here we show that Brca2 opposes Pds5 function in sister chromatid cohesion by assaying precocious sister chromatid separation in metaphase spreads of cultured cells depleted for these proteins. By genome-wide chromatin immunoprecipitation we find that Pds5 facilitates SA cohesin subunit association with DNA replication origins and that Brca2 inhibits SA binding, mirroring their effects on sister chromatid cohesion. Cohesin binding is maximal at replication origins and extends outward to occupy active genes and regulatory sequences. Pds5 and Wapl, but not Brca2, limit the distance that cohesin extends from origins, thereby determining which active genes, enhancers and silencers bind cohesin. Using RNA-seq we find that Brca2, Pds5 and Wapl influence the expression of most genes sensitive to Nipped-B and cohesin, largely in the same direction. These findings demonstrate that Brca2 regulates sister chromatid cohesion and gene expression in addition to its canonical role in DNA repair and expand the known functions of accessory proteins in cohesin’s diverse functions.Author summaryThe cohesin protein complex has multiple functions in eukaryotic cells. It ensures that when a cell divides, the two daughter cells receive the correct number of chromosomes. It does this by holding together the sister chromatids that are formed when chromosomes are duplicated by DNA replication. Cohesin also helps repair damaged DNA, and to regulate genes important for growth and development. Even minor deficiencies in some proteins that regulate cohesin cause significant human birth defects. Here we investigated in Drosophila cells how three proteins, Pds5, Wapl and Brca2, determine where cohesin binds to chromosomes, control cohesin’s ability to hold sister chromatids together, and participate in gene expression. We find that Pds5 and Wapl work together, likely during DNA replication, to determine which genes bind cohesin by controlling how far cohesin spreads out along chromosomes. Pds5 is required for cohesin to hold sister chromatids together, and Brca2 counteracts this function. In contrast to the opposing roles in sister chromatid cohesion, Pds5 and Brca2 work together to facilitate control of gene expression by cohesin. Brca2 plays a critical role in DNA repair, and these studies expand the known roles for Brca2 by showing that it also regulates sister chromatid cohesion and gene expression. BRCA2 mutations in humans increase susceptibility to breast and ovarian cancer, and these findings raise the possibility that changes in chromosome segregation or gene expression might contribute to the increased cancer risk associated with these mutations.


Sign in / Sign up

Export Citation Format

Share Document