scholarly journals Multiple determinants and consequences of cohesion fatigue in mammalian cells

2018 ◽  
Vol 29 (15) ◽  
pp. 1811-1824 ◽  
Author(s):  
Hem Sapkota ◽  
Emilia Wasiak ◽  
John R. Daum ◽  
Gary J. Gorbsky

Cells delayed in metaphase with intact mitotic spindles undergo cohesion fatigue, where sister chromatids separate asynchronously, while cells remain in mitosis. Cohesion fatigue requires release of sister chromatid cohesion. However, the pathways that breach sister chromatid cohesion during cohesion fatigue remain unknown. Using moderate-salt buffers to remove loosely bound chromatin cohesin, we show that “cohesive” cohesin is not released during chromatid separation during cohesion fatigue. Using a regulated protein heterodimerization system to lock different cohesin ring interfaces at specific times in mitosis, we show that the Wapl-mediated pathway of cohesin release is not required for cohesion fatigue. By manipulating microtubule stability and cohesin complex integrity in cell lines with varying sensitivity to cohesion fatigue, we show that rates of cohesion fatigue reflect a dynamic balance between spindle pulling forces and resistance to separation by interchromatid cohesion. Finally, while massive separation of chromatids in cohesion fatigue likely produces inviable cell progeny, we find that short metaphase delays, leading to partial chromatid separation, predispose cells to chromosome missegregation. Thus, complete separation of one or a few chromosomes and/or partial separation of sister chromatids may be an unrecognized but common source of chromosome instability that perpetuates the evolution of malignant cells in cancer.

2017 ◽  
Author(s):  
Hem Sapkota ◽  
Emilia Wasiak ◽  
Gary J. Gorbsky

AbstractCells delayed in metaphase with intact mitotic spindles undergo cohesion fatigue, where sister chromatids separate asynchronously, while cells remain in M phase. Cohesion fatigue requires release of sister chromatid cohesion. However, the pathways necessary to breach sister chromatid cohesion during cohesion fatigue remain unknown. Using a regulated protein heterodimerization system to lock different cohesin interfaces at specific times in mitosis, we show that the prophase pathway of Cohesin release is not required for cohesion fatigue. By manipulating microtubule stability and Cohesin complex integrity in cell lines with varying sensitivity to cohesion fatigue, we show that rates of cohesion fatigue reflect a dynamic balance between spindle pulling forces and resistance to separation by interchromatid cohesion. Cohesion fatigue that results in complete chromatid separation may be an unrecognized but common source of chromosome instability. Here, we extend the significance of cohesion fatigue by showing that even limited delays at metaphase lead to partial centromere separation and predispose cells to chromosome missegregation.


2010 ◽  
Vol 188 (3) ◽  
pp. 335-349 ◽  
Author(s):  
Rihui Yan ◽  
Sharon E. Thomas ◽  
Jui-He Tsai ◽  
Yukihiro Yamada ◽  
Bruce D. McKee

Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for meiotic cohesion in Drosophila. In solo mutants, sister centromeres separate before prometaphase I, disrupting meiosis I centromere orientation and causing nondisjunction of both homologous and sister chromatids. Centromeric foci of the cohesin protein SMC1 are absent in solo mutants at all meiotic stages. SOLO and SMC1 colocalize to meiotic centromeres from early prophase I until anaphase II in wild-type males, but both proteins disappear prematurely at anaphase I in mutants for mei-S332, which encodes the Drosophila homologue of the cohesin protector protein shugoshin. The solo mutant phenotypes and the localization patterns of SOLO and SMC1 indicate that they function together to maintain sister chromatid cohesion in Drosophila meiosis.


2015 ◽  
Vol 2 (2) ◽  
pp. 150029 ◽  
Author(s):  
Mary Brady ◽  
Leocadia V. Paliulis

The challenge of cell division is to distribute partner chromosomes (pairs of homologues, pairs of sex chromosomes or pairs of sister chromatids) correctly, one into each daughter cell. In the ‘standard’ meiosis, this problem is solved by linking partners together via a chiasma and/or sister chromatid cohesion, and then separating the linked partners from one another in anaphase; thus, the partners are kept track of, and correctly distributed. Many organisms, however, properly separate chromosomes in the absence of any obvious physical connection, and movements of unconnected partner chromosomes are coordinated at a distance. Meiotic distance interactions happen in many different ways and in different types of organisms. In this review, we discuss several different known types of distance segregation and propose possible explanations for non-random segregation of distance-segregating chromosomes.


2019 ◽  
Author(s):  
Pilar Gutierrez-Escribano ◽  
Matthew D. Newton ◽  
Aida Llauró ◽  
Jonas Huber ◽  
Loredana Tanasie ◽  
...  

AbstractEssential processes such as accurate chromosome segregation, regulation of gene expression and DNA repair rely on protein-mediated DNA tethering. Sister chromatid cohesion requires the SMC complex cohesin to act as a protein linker that holds replicated chromatids together (1, 2). The molecular mechanism by which cohesins hold sister chromatids has remained controversial. Here, we used a single molecule approach to visualise the activity of cohesin complexes as they hold DNA molecules. We describe a DNA bridging activity that requires ATP and is conserved from yeast to human cohesin. We show that cohesin can form two distinct classes of bridges at physiological conditions, a “permanent bridge” able to resists high force (over 80pN) and a “reversible bridge” that breaks at lower forces (5-40pN). Both classes of bridges require Scc2/Scc4 in addition to ATP. We demonstrate that bridge formation requires physical proximity of the DNA segments to be tethered and show that “permanent” cohesin bridges can move between two DNA molecules but cannot be removed from DNA when they occur in cis. This suggests that separate physical compartments in cohesin molecules are involved in the bridge. Finally, we show that cohesin tetramers, unlike condensin, cannot compact linear DNA molecules against low force, demonstrating that the core activity of cohesin tetramers is bridging DNA rather than compacting it. Our findings carry important implications for the understanding of the basic mechanisms behind cohesin-dependent establishment of sister chromatid cohesion and chromosome architecture.


2018 ◽  
Author(s):  
Yuehong Yang ◽  
Wei Wang ◽  
Min Li ◽  
Wen Zhang ◽  
Yuliang Huang ◽  
...  

AbstractSister chromatid cohesion plays a key role in ensuring precise chromosome segregation during mitosis, which is mediated by the multisubunit complex cohesin. However, the molecular regulation of cohesin subunits stability remains unclear. Here, we show that NudCL2 (NudC-like protein 2) is essential for the stability of cohesin subunits by regulating Hsp90 ATPase activity in mammalian cells. Depletion of NudCL2 induces mitotic defects and premature sister chromatid separation and destabilizes cohesin subunits that interact with NudCL2. Similar defects are also observed upon inhibition of Hsp90 ATPase activity. Interestingly, ectopic expression of Hsp90 efficiently rescues the protein instability and functional deficiency of cohesin induced by NudCL2 depletion, but not vice versa. Moreover, NudCL2 not only binds to Hsp90, but also significantly modulates Hsp90 ATPase activity and promotes the chaperone function of Hsp90. Taken together, these data suggest that NudCL2 is a previously undescribed Hsp90 cochaperone to modulate sister chromatid cohesion by stabilizing cohesin subunits, providing a hitherto unrecognized mechanism that is crucial for faithful chromosome segregation during mitosis.


2010 ◽  
Vol 38 (6) ◽  
pp. 1639-1644 ◽  
Author(s):  
Raquel A. Oliveira ◽  
Kim Nasmyth

Sister-chromatid cohesion, thought to be primarily mediated by the cohesin complex, is essential for chromosome segregation. The forces holding the two sisters resist the tendency of microtubules to prematurely pull sister DNAs apart and thereby prevent random segregation of the genome during mitosis, and consequent aneuploidy. By counteracting the spindle pulling forces, cohesion between the two sisters generates the tension necessary to stabilize microtubule–kinetochore attachments. Upon entry into anaphase, however, the linkages that hold the two sister DNAs must be rapidly destroyed to allow physical separation of chromatids. Anaphase cells must therefore possess mechanisms that ensure faithful segregation of single chromatids that are now attached stably to the spindle in a manner no longer dependent on tension. In the present review, we discuss the nature of the cohesive forces that hold sister chromatids together, the mechanisms that trigger their physical separation, and the anaphase-specific changes that ensure proper segregation of single chromatids during the later stages of mitosis.


2019 ◽  
Vol 117 (2) ◽  
pp. 1081-1089 ◽  
Author(s):  
Dawn Bender ◽  
Eulália Maria Lima Da Silva ◽  
Jingrong Chen ◽  
Annelise Poss ◽  
Lauren Gawey ◽  
...  

The tethering together of sister chromatids by the cohesin complex ensures their accurate alignment and segregation during cell division. In vertebrates, sister chromatid cohesion requires the activity of the ESCO2 acetyltransferase, which modifies the Smc3 subunit of cohesin. It was shown recently that ESCO2 promotes cohesion through interaction with the MCM replicative helicase. However, ESCO2 does not significantly colocalize with the MCM complex, suggesting there are additional interactions important for ESCO2 function. Here we show that ESCO2 is recruited to replication factories, sites of DNA replication, through interaction with PCNA. We show that ESCO2 contains multiple PCNA-interaction motifs in its N terminus, each of which is essential to its ability to establish cohesion. We propose that multiple PCNA-interaction motifs embedded in a largely flexible and disordered region of the protein underlie the unique ability of ESCO2 to establish cohesion between sister chromatids precisely as they are born during DNA replication.


Sign in / Sign up

Export Citation Format

Share Document