gamete formation
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 23)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Helal A. Ansari ◽  
Nicholas W. Ellison ◽  
Isabelle M. Verry ◽  
Warren M. Williams

Abstract Background Unreduced gametes, a driving force in the widespread polyploidization and speciation of flowering plants, occur relatively frequently in interspecific or intergeneric hybrids. Studies of the mechanisms leading to 2n gamete formation, mainly in the wheat tribe Triticeae have shown that unreductional meiosis is often associated with chromosome asynapsis during the first meiotic division. The present study explored the mechanisms of meiotic nonreduction leading to functional unreduced gametes in an interspecific Trifolium (clover) hybrid with three sub-genomes from T. ambiguum and one sub-genome from T. occidentale. Results Unreductional meiosis leading to 2n gametes occurred when there was a high frequency of asynapsis during the first meiotic division. In this hybrid, approximately 39% of chromosomes were unpaired at metaphase I. Within the same cell at anaphase I, sister chromatids of univalents underwent precocious separation and formed laggard chromatids whereas paired chromosomes segregated without separation of sister chromatids as in normal meiosis. This asynchrony was frequently accompanied by incomplete or no movement of chromosomes toward the poles and restitution leading to unreduced chromosome constitutions. Reductional meiosis was restored in progeny where asynapsis frequencies were low. Two progeny plants with approximately 5 and 7% of unpaired chromosomes at metaphase I showed full restoration of reductional meiosis. Conclusions The study revealed that formation of 2n gametes occurred when asynapsis (univalent) frequency at meiosis I was high, and that normal gamete production was restored in the next generation when asynapsis frequencies were low. Asynapsis-dependent 2n gamete formation, previously supported by evidence largely from wheat and its relatives and grasshopper, is also applicable to hybrids from the dicotyledonous plant genus Trifolium. The present results align well with those from these widely divergent organisms and strongly suggest common molecular mechanisms involved in unreduced gamete formation.


2021 ◽  
pp. gr.275981.121
Author(s):  
Chenxin Li ◽  
Jonathan I. Gent ◽  
Hengping Xu ◽  
Hong Fu ◽  
Scott D. Russell ◽  
...  

The zygote, a totipotent stem cell, is crucial to the life cycle of sexually reproducing organisms. It is produced by the fusion of two differentiated cells - the egg and sperm, which in plants have radically different siRNA transcriptomes from each other, and from multicellular embryos. Due to technical challenges, the epigenetic changes that accompany the transition from differentiated gametes to totipotent zygote are poorly understood. Since siRNAs serve as both regulators and outputs of the epigenome, we performed here the successful characterization of small RNA transcriptomes of zygotes from rice. Zygote small RNAs exhibited extensive maternal carryover and an apparent lack of paternal contribution, indicated by absence of sperm signature siRNAs. Zygote formation was accompanied by widespread redistribution of 24-nt siRNAs relative to gametes, such that ~70% of the zygote siRNA loci did not overlap any egg cell siRNA loci. Newly-detected siRNA loci in zygote are gene proximal and not associated with centromeric heterochromatin, similar to canonical siRNAs, in sharp contrast to gametic siRNA loci which are gene-distal and heterochromatic. In addition, zygote but not egg siRNA loci were associated with high DNA methylation in the mature embryo. Thus, the zygote begins transitioning before the first embryonic division to an siRNA profile that is associated with future RdDM in embryogenesis. These findings indicate that in addition to changes in gene expression, the transition to totipotency in the plant zygote is accompanied by resetting of the epigenetic reprogramming that occurred during gamete formation.


2021 ◽  
Author(s):  
Mohammad Zeeshan ◽  
Declan Brady ◽  
Robert Markus ◽  
Sue Vaughan ◽  
David Ferguson ◽  
...  

AbstractThe centriole/basal body (CBB) is an evolutionarily conserved organelle acting as a microtubule organising centre (MTOC) to nucleate cilia, flagella and the centrosome. SAS4/CPAP is a conserved component associated with BB biogenesis in many model flagellated cells. Plasmodium, a divergent unicellular eukaryote and causative agent of malaria, displays an atypical closed mitosis with an MTOC, reminiscent of the acentriolar MTOC, embedded in the nuclear membrane at most proliferative stages. Mitosis during male gamete formation is accompanied by flagellum formation: within 15 minutes, genome replication (from 1N to 8N) and three successive rounds of mitosis without nuclear division occur, with coordinated axoneme biogenesis in the cytoplasm resulting in eight flagellated gametes. There are two MTOCs in male gametocytes. An acentriolar MTOC located with the nuclear envelope and a centriolar MTOC (basal body) located within the cytoplasm that are required for flagellum assembly. To study the location and function of SAS4 during this rapid process, we examined the spatial profile of SAS4 in real time by live cell imaging and its function by gene deletion. We show its absence during asexual proliferation but its presence and coordinated association and assembly of SAS4 with another basal body component, kinesin8B, which is involved in axoneme biogenesis. In contrast its separation from the nuclear kinetochore marker NDC80 suggests that SAS4 is part of the basal body and outer centriolar MTOC residing in the cytoplasm. However, deletion of the SAS4 gene produced no phenotype, indicating that it is not essential for male gamete formation or parasite transmission through the mosquito.


2021 ◽  
Author(s):  
Rachael E Barton ◽  
Lucia F Massari ◽  
Daniel Robertson ◽  
Adele L Marston

Cohesin organizes the genome by forming intra-chromosomal loops and inter-sister chromatid linkages. During gamete formation by meiosis, chromosomes are reshaped to support crossover recombination and two consecutive rounds of chromosome segregation. Here we show that Eco1 acetyltransferase positions both chromatin loops and sister chromatid cohesion to organize meiotic chromosomes into functional domains in budding yeast. Eco1 acetylates the Smc3 cohesin subunit in meiotic S phase to establish chromatin boundaries, independently of DNA replication. Boundary formation by Eco1 is critical for prophase exit and for the maintenance of cohesion until meiosis II, but is independent of the ability of Eco1 to antagonize the cohesin-release factor, Wpl1. Conversely, prevention of cohesin release by Wpl1 is essential for centromeric cohesion, kinetochore monoorientation and co-segregation of sister chromatids in meiosis I. Our findings establish Eco1 as a key determinant of chromatin boundaries and cohesion positioning, revealing how local chromosome structuring directs genome transmission into gametes.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Vikas Yadav ◽  
Sheng Sun ◽  
Joseph Heitman

Some remarkable animal species require an opposite-sex partner for their sexual development but discard the partner’s genome before gamete formation, generating hemi-clonal progeny in a process called hybridogenesis. Here, we discovered a similar phenomenon, termed pseudosexual reproduction, in a basidiomycete human fungal pathogen, Cryptococcus neoformans, where exclusive uniparental inheritance of nuclear genetic material was observed during bisexual reproduction. Analysis of strains expressing fluorescent reporter proteins revealed instances where only one of the parental nuclei was present in the terminal sporulating basidium. Whole-genome sequencing revealed the nuclear genome of the progeny was identical with one or the other parental genome. Pseudosexual reproduction was also detected in natural isolate crosses where it resulted in mainly MATa progeny, a bias observed in Cryptococcus ecological distribution as well. The mitochondria in these progeny were inherited from the MAT<strong>a</strong> parent, resulting in nuclear-mitochondrial genome exchange. The meiotic recombinase Dmc1 was found to be critical for pseudosexual reproduction. These findings reveal a novel, and potentially ecologically significant, mode of eukaryotic microbial reproduction that shares features with hybridogenesis in animals.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mohammad Zeeshan ◽  
Rajan Pandey ◽  
Amit Kumar Subudhi ◽  
David J. P. Ferguson ◽  
Gursimran Kaur ◽  
...  

AbstractPP1 is a conserved eukaryotic serine/threonine phosphatase that regulates many aspects of mitosis and meiosis, often working in concert with other phosphatases, such as CDC14 and CDC25. The proliferative stages of the malaria parasite life cycle include sexual development within the mosquito vector, with male gamete formation characterized by an atypical rapid mitosis, consisting of three rounds of DNA synthesis, successive spindle formation with clustered kinetochores, and a meiotic stage during zygote to ookinete development following fertilization. It is unclear how PP1 is involved in these unusual processes. Using real-time live-cell and ultrastructural imaging, conditional gene knockdown, RNA-seq and proteomic approaches, we show that Plasmodium PP1 is implicated in both mitotic exit and, potentially, establishing cell polarity during zygote development in the mosquito midgut, suggesting that small molecule inhibitors of PP1 should be explored for blocking parasite transmission.


Author(s):  
Peng Sun ◽  
Soichiro Nishiyama ◽  
Hideaki Asakuma ◽  
Roeland E Voorrips ◽  
Jianmin Fu ◽  
...  

Abstract Unreduced gametes (2n gametes), possessing double the haploid genome, whatever ploidy that happens to be, are a common source of ploidy variation in plant populations. First and second division restitution (FDR and SDR) are the dominant mechanisms of 2n gamete production; all else being equal, FDR gametes have a higher degree of heterozygosity, thus they are advantageous in breeding. The discrimination of these mechanisms from the consequence of hybridization is challenging, especially in higher polyploids, and usually requires information on centromere location. In this study, we propose a genotyping-based strategy to uncover the mechanisms of 2n gamete formation in progeny that has a higher ploidy than its parents. Simulation of 2n gamete production revealed that FDR and SDR pathways can be discriminated based on allele transmission patterns alone without information on centromere location. We applied this strategy to study the formation mechanism of a nonaploid Diospyros kaki ‘Akiou’, which was bred via hybridization between D. kaki hexaploid cultivars. The result demonstrated that ‘Akiou’ was derived from the fertilization of a normal female gamete by a 2n male gamete, and that this 2n gamete was produced through FDR. Consequently, the distinct duplex transmission pattern in the FDR gamete enabled us to infer the genomic characteristics of polyploid persimmon. The method could be tested only for the plant being polypoid, which allows for the ability to discriminate causes of 2n gamete formation using allele dosage in progeny, and will be useful in future studies of polyploid genomics.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 999
Author(s):  
Fabio Palumbo ◽  
Elisa Pasquali ◽  
Emidio Albertini ◽  
Gianni Barcaccia

The gene flow mediated by unreduced gametes between diploid and tetraploid plants of the Medicago sativa–coerulea–falcata complex is pivotal for alfalfa breeding. Sexually tetraploidized hybrids could represent the best way to exploit progressive heterosis simultaneously derived from gene diversity, heterozygosity, and polyploidy. Moreover, unreduced gametes combined with parthenogenesis (i.e., apomixis) would enable the cloning of plants through seeds, providing a unique opportunity for the selection of superior genotypes with permanently fixed heterosis. This reproductive strategy has never been detected in the genus Medicago, but features of apomixis, such as restitutional apomeiosis and haploid parthenogenesis, have been reported. By means of an original case study, we demonstrated that sexually tetraploidized plants maintain apomeiosis, but this trait is developmentally independent from parthenogenesis. Alfalfa meiotic mutants producing unreduced egg cells revealed a null or very low capacity for parthenogenesis. The overall achievements reached so far are reviewed and discussed along with the efforts and strategies made for exploiting reproductive mutants that express apomictic elements in alfalfa breeding programs. Although several studies have investigated the cytological mechanisms responsible for 2n gamete formation and the inheritance of this trait, only a very small number of molecular markers and candidate genes putatively linked to unreduced gamete formation have been identified. Furthermore, this scenario has remained almost unchanged over the last two decades. Here, we propose a reverse genetics approach, by exploiting the genomic and transcriptomic resources available in alfalfa. Through a comparison with 9 proteins belonging to Arabidopsis thaliana known for their involvement in 2n gamete production, we identified 47 orthologous genes and evaluated their expression in several tissues, paving the way for novel candidate gene characterization studies. An overall view on strategies suitable to fill the gap between well-established meiotic mutants and next-generation genomic resources is presented and discussed.


2021 ◽  
Author(s):  
Catalina Pereira ◽  
Gerardo A Arroyo-Martinez ◽  
Matthew Z Guo ◽  
Emma R Kelly ◽  
Kathryn J Grive ◽  
...  

DNA damage response mechanisms have meiotic roles that ensure successful gamete formation. While completion of meiotic double-strand break (DSB) repair requires the canonical RAD9A-RAD1-HUS1 (9A-1-1) complex, mammalian meiocytes also express RAD9A and HUS1 paralogs, RAD9B and HUS1B, predicted to form alternative 9-1-1 complexes. The RAD1 subunit is shared by all predicted 9-1-1 complexes and localizes to meiotic chromosomes even in the absence of HUS1 and RAD9A. Here we report that testis-specific RAD1 disruption resulted in impaired DSB repair, germ cell depletion and infertility. Unlike Hus1 or Rad9a disruption, Rad1 loss also caused defects in homolog synapsis, ATR signaling and meiotic sex chromosome inactivation. Comprehensive testis phosphoproteomics revealed that RAD1 and ATR coordinately regulate numerous proteins involved in DSB repair, meiotic silencing, synaptonemal complex formation, and cohesion. Together, these results establish critical roles for both canonical and alternative 9-1-1 complexes in meiotic ATR activation and successful prophase I completion.


Sign in / Sign up

Export Citation Format

Share Document