Evolution of moonlighting proteins: insight from yeasts

2014 ◽  
Vol 42 (6) ◽  
pp. 1715-1719 ◽  
Author(s):  
Carlos Gancedo ◽  
Carmen-Lisset Flores ◽  
Juana M. Gancedo

The present article addresses the possibilities offered by yeasts to study the problem of the evolution of moonlighting proteins. It focuses on data available on hexokinase from Saccharomyces cerevisiae that moonlights in catabolite repression and on galactokinase from Kluyveromyces lactis that moonlights controlling the induction of the GAL genes. Possible experimental approaches to studying the evolution of moonlighting hexose kinases are suggested.

1991 ◽  
Vol 11 (11) ◽  
pp. 5454-5461
Author(s):  
J Meyer ◽  
A Walker-Jonah ◽  
C P Hollenberg

We have analyzed a GAL1 mutant (gal1-r strain) of the yeast Kluyveromyces lactis which lacks the induction of beta-galactosidase and the enzymes of the Leloir pathway in the presence of galactose. The data show that the K. lactis GAL1 gene product has, in addition to galactokinase activity, a function required for induction of the lactose system. This regulatory function is not dependent on galactokinase activity, as it is still present in a galactokinase-negative mutant (gal1-209). Complementation studies in Saccharomyces cervisiae show that K. lactis GAL1 and gal1-209, but not gal1-r, complement the gal3 mutation. We conclude that the regulatory function of GAL1 in K. lactis soon after induction is similar to the function of GAL3 in S. cerevisiae.


1991 ◽  
Vol 11 (11) ◽  
pp. 5454-5461 ◽  
Author(s):  
J Meyer ◽  
A Walker-Jonah ◽  
C P Hollenberg

We have analyzed a GAL1 mutant (gal1-r strain) of the yeast Kluyveromyces lactis which lacks the induction of beta-galactosidase and the enzymes of the Leloir pathway in the presence of galactose. The data show that the K. lactis GAL1 gene product has, in addition to galactokinase activity, a function required for induction of the lactose system. This regulatory function is not dependent on galactokinase activity, as it is still present in a galactokinase-negative mutant (gal1-209). Complementation studies in Saccharomyces cervisiae show that K. lactis GAL1 and gal1-209, but not gal1-r, complement the gal3 mutation. We conclude that the regulatory function of GAL1 in K. lactis soon after induction is similar to the function of GAL3 in S. cerevisiae.


1987 ◽  
Vol 7 (3) ◽  
pp. 991-997
Author(s):  
M Ruzzi ◽  
K D Breunig ◽  
A G Ficca ◽  
C P Hollenberg

In contrast to the Escherichia coli lac operon, the yeast beta-galactosidase gene is positively regulated. In the 5'-noncoding region of the Kluyveromyces lactis LAC4 gene, we mapped an upstream activation site (UAS) that is required for induction. This sequence, located between positions -435 and -326 from the start of translation, functions irrespective of its orientation and can confer lactose regulation to the heterologous CYC1 promoter. It is composed of at least two subsequences that must act in concert. One of these subsequences showed a strong homology to the UAS consensus sequence of the Saccharomyces cerevisiae GAL genes (E. Giniger, S. M. Varnum, and M. Ptashne, Cell 40:767-774, 1985). We propose that this region of homology located at about position -426 is a binding site for the product of the regulatory gene LAC9 which probably induces transcription of the LAC4 gene in a manner analogous to that of the GAL4 protein.


1987 ◽  
Vol 7 (3) ◽  
pp. 991-997 ◽  
Author(s):  
M Ruzzi ◽  
K D Breunig ◽  
A G Ficca ◽  
C P Hollenberg

In contrast to the Escherichia coli lac operon, the yeast beta-galactosidase gene is positively regulated. In the 5'-noncoding region of the Kluyveromyces lactis LAC4 gene, we mapped an upstream activation site (UAS) that is required for induction. This sequence, located between positions -435 and -326 from the start of translation, functions irrespective of its orientation and can confer lactose regulation to the heterologous CYC1 promoter. It is composed of at least two subsequences that must act in concert. One of these subsequences showed a strong homology to the UAS consensus sequence of the Saccharomyces cerevisiae GAL genes (E. Giniger, S. M. Varnum, and M. Ptashne, Cell 40:767-774, 1985). We propose that this region of homology located at about position -426 is a binding site for the product of the regulatory gene LAC9 which probably induces transcription of the LAC4 gene in a manner analogous to that of the GAL4 protein.


2005 ◽  
Vol 69 (4) ◽  
pp. 428-439 ◽  
Author(s):  
Alessandra Piscitelli ◽  
Paola Giardina ◽  
Cristina Mazzoni ◽  
Giovanni Sannia

Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 147-154 ◽  
Author(s):  
Douglas J Kominsky ◽  
Peter E Thorsness

Abstract Organisms that can grow without mitochondrial DNA are referred to as “petite-positive” and those that are inviable in the absence of mitochondrial DNA are termed “petite-negative.” The petite-positive yeast Saccharomyces cerevisiae can be converted to a petite-negative yeast by inactivation of Yme1p, an ATP- and metal-dependent protease associated with the inner mitochondrial membrane. Suppression of this yme1 phenotype can occur by virtue of dominant mutations in the α- and γ-subunits of mitochondrial ATP synthase. These mutations are similar or identical to those occurring in the same subunits of the same enzyme that converts the petite-negative yeast Kluyveromyces lactis to petite-positive. Expression of YME1 in the petite-negative yeast Schizosaccharomyces pombe converts this yeast to petite-positive. No sequence closely related to YME1 was found by DNA-blot hybridization to S. pombe or K. lactis genomic DNA, and no antigenically related proteins were found in mitochondrial extracts of S. pombe probed with antisera directed against Yme1p. Mutations that block the formation of the F1 component of mitochondrial ATP synthase are also petite-negative. Thus, the F1 complex has an essential activity in cells lacking mitochondrial DNA and Yme1p can mediate that activity, even in heterologous systems.


Sign in / Sign up

Export Citation Format

Share Document