scholarly journals Kluyveromyces lactis HIS4 transcriptional regulation: similarities and differences to Saccharomyces cerevisiae HIS4 gene

FEBS Letters ◽  
1999 ◽  
Vol 458 (1) ◽  
pp. 72-76 ◽  
Author(s):  
Mónica Lamas-Maceiras ◽  
M.Esperanza Cerdán ◽  
M.Angeles Freire-Picos
2004 ◽  
Vol 50 (8) ◽  
pp. 645-652 ◽  
Author(s):  
Silvia M Díaz Prado ◽  
M Esperanza Cerdán ◽  
M Isabel González Siso

Cloning and transcriptional regulation of the KlFBA1 gene that codes for the class II fructose-1,6-bisphosphate aldolase of the yeast Kluyveromyces lactis are described. KlFBA1 mRNA diminishes transiently during the shift from hypoxic to fully aerobic conditions and increases in the reversal shift. This regulation is mediated by heme since expression was higher in a mutant defective in heme biosynthesis. KlFBA1 transcription is not induced by calcium-shortage, low temperature, or at stationary phase. These data suggest that KlFBA1 plays a role in the balance between oxidative and fermentative metabolism and that this gene is differentially regulated in K. lactis and Saccharomyces cerevisiae, i.e., a respiratory vs. fermentative yeast.Key words: FBA1, fructose-1,6-bisphosphate aldolase, Kluyveromyces, transcriptional regulation, yeast.


Genetics ◽  
1997 ◽  
Vol 145 (3) ◽  
pp. 661-670 ◽  
Author(s):  
Qing-Qing Fan ◽  
Fei Xu ◽  
Michael A White ◽  
Thomas D Petes

In a wild-type strain of Saccharomyces cerevisiae, a hotspot for meiotic recombination is located upstream of the HIS4 gene. An insertion of a 49-bp telomeric sequence into the coding region of HIS4 strongly stimulates meiotic recombination and the local formation of meiosis-specific double-strand DNA breaks (DSBs). When strains are constructed in which both hotspots are heterozygous, hotspot activity is substantially less when the hotspots are on the same chromosome than when they are on opposite chromosomes.


1996 ◽  
Vol 20 (4) ◽  
pp. 765-772 ◽  
Author(s):  
C. Prior ◽  
L. Tizzani ◽  
H. Fukuhara ◽  
M. Wésolowski-Louvel

2005 ◽  
Vol 69 (4) ◽  
pp. 428-439 ◽  
Author(s):  
Alessandra Piscitelli ◽  
Paola Giardina ◽  
Cristina Mazzoni ◽  
Giovanni Sannia

Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 147-154 ◽  
Author(s):  
Douglas J Kominsky ◽  
Peter E Thorsness

Abstract Organisms that can grow without mitochondrial DNA are referred to as “petite-positive” and those that are inviable in the absence of mitochondrial DNA are termed “petite-negative.” The petite-positive yeast Saccharomyces cerevisiae can be converted to a petite-negative yeast by inactivation of Yme1p, an ATP- and metal-dependent protease associated with the inner mitochondrial membrane. Suppression of this yme1 phenotype can occur by virtue of dominant mutations in the α- and γ-subunits of mitochondrial ATP synthase. These mutations are similar or identical to those occurring in the same subunits of the same enzyme that converts the petite-negative yeast Kluyveromyces lactis to petite-positive. Expression of YME1 in the petite-negative yeast Schizosaccharomyces pombe converts this yeast to petite-positive. No sequence closely related to YME1 was found by DNA-blot hybridization to S. pombe or K. lactis genomic DNA, and no antigenically related proteins were found in mitochondrial extracts of S. pombe probed with antisera directed against Yme1p. Mutations that block the formation of the F1 component of mitochondrial ATP synthase are also petite-negative. Thus, the F1 complex has an essential activity in cells lacking mitochondrial DNA and Yme1p can mediate that activity, even in heterologous systems.


2014 ◽  
Vol 42 (6) ◽  
pp. 1715-1719 ◽  
Author(s):  
Carlos Gancedo ◽  
Carmen-Lisset Flores ◽  
Juana M. Gancedo

The present article addresses the possibilities offered by yeasts to study the problem of the evolution of moonlighting proteins. It focuses on data available on hexokinase from Saccharomyces cerevisiae that moonlights in catabolite repression and on galactokinase from Kluyveromyces lactis that moonlights controlling the induction of the GAL genes. Possible experimental approaches to studying the evolution of moonlighting hexose kinases are suggested.


2002 ◽  
Vol 365 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Isabel MAYORDOMO ◽  
Pascual SANZ

In order to identify proteins that interact with Bmh2, a yeast member of the 14-3-3 protein family, we performed a two-hybrid screening using LexA-Bmh2 as bait. We identified Fin1, a novel intermediate filament protein, as the protein that showed the highest degree of interaction. We also identified components of the vesicular transport machinery such as Gic2 and Msb3, proteins involved in transcriptional regulation such as Mbf1, Gcr2 and Reg2, and a variety of other different proteins (Ppt1, Lre1, Rps0A and Ylr177w). We studied the interaction between Bmh2 and Fin1 in more detail and found that Bmh2 only interacted with phosphorylated forms of Fin1. In addition, we showed that Glc7, the catalytic subunit of the protein phosphatase 1 complex, was also able to interact with Fin1.


Sign in / Sign up

Export Citation Format

Share Document