Neural Factors Contributing to Renin Release during Reduction in Renal Perfusion Pressure and Blood flow in Cats

1976 ◽  
Vol 51 (5) ◽  
pp. 453-461 ◽  
Author(s):  
A. Stella ◽  
F. Calaresu ◽  
A. Zanchetti

1. The participation of neural mechanisms in mediating the renin release induced by reduction of renal perfusion pressure was explored in anaesthetized cats by comparing renin release from the two kidneys, one acutely denervated and the other intact. 2. Suprarenal aortic stenosis of 10 min duration reduced renal perfusion pressure to 50 mmHg and halved blood flow to both kidneys, but caused a greater release of renin from the innervated kidney than from the contralateral denervated one (increments of 72 ± 17 and 29 ± 20 pmol/min respectively). 3. A study of the time-course of the response during aortic stenosis of 30 min duration showed early release of renin from the innervated kidney at a time (5 min) when little release occurred from the denervated one. In later samplings (15 and 30 min) the response of the innervated kidney levelled out at somewhat lower values, and that of the denervated organ progressively increased, but remained smaller than on the side with intact nerves. 4. There was no parallelism between renin release and renal vasomotor changes induced by aortic stenosis, as vasomotor changes were equal in the two kidneys and remained constant from beginning to end of stenosis. It is concluded that a significant part of the renin release induced by aortic stenosis is dependent on neural mechanisms: the neural differs from the non-neural component in being of more rapid onset and probably of shorter duration.

1976 ◽  
Vol 51 (s3) ◽  
pp. 85s-87s
Author(s):  
A. Stella ◽  
F. Calaresu ◽  
A. Zanchetti

1. Renin release from an intact, innervated kidney and from the contralateral denervated kidney was measured before and during a period of suprarenal aortic stenosis. 2. Aortic stenosis of 10 min duration reduced renal perfusion pressure to 50 mmHg and increased renin release from both kidneys, but the response from the innervated kidney was greater. 3. A study of the time-course of the response during 30 min of aortic stenosis showed that the difference in rate of renin release between the innervated and the denervated kidney is greatest during the first few minutes of aortic stenosis.


1985 ◽  
Vol 248 (3) ◽  
pp. E317-E326 ◽  
Author(s):  
M. L. Blair ◽  
Y. H. Chen ◽  
J. L. Izzo

Experiments were performed in pentobarbital-anesthetized dogs to 1) determine if neural stimulation of renin release can be mediated by renal alpha-adrenoceptors at renal nerve stimulation (RNS) frequencies that have little or no effect on total renal blood flow (less than or equal to 1.2 Hz) and 2) ascertain whether alpha-adrenergic control of renin release is affected by renal perfusion pressure (RPP). The renal nerves were electrically stimulated both in the absence of RPP control and with RPP controlled near 85 mmHg. Decreased RPP lowered the threshold for neurogenic stimulation of renin release from less than or equal to 1.2 to 0.3 Hz. beta-Adrenoceptor blockade with propranolol blunted the renin secretion rate (RSR) response to graded RNS (0.3-5.0 Hz), but the extent of inhibition during low-frequency RNS was dependent on RPP. Propranolol prevented increased RSR at 0.6-1.2 Hz RNS when RPP was 111-120 mmHg but not when RPP was 85 mmHg. Combined alpha- and beta-blockade with prazosin and propranolol totally prevented increased RSR during 0.6-1.2 Hz RNS at reduced RPP. In summary, both alpha- and beta-adrenoceptors mediate neural stimulation of renin release at RNS frequencies that do not decrease total renal blood flow when RPP is 85 mmHg.


1994 ◽  
Vol 267 (1) ◽  
pp. R253-R259 ◽  
Author(s):  
D. M. Strick ◽  
M. J. Fiksen-Olsen ◽  
J. C. Lockhart ◽  
R. J. Roman ◽  
J. C. Romero

We studied the responses of total renal blood flow (RBF) and renal medullary blood flow (RMBF) to changes in renal perfusion pressure (RPP) within and below the range of renal autoregulation in the anesthetized dog (n = 7). To measure RMBF, we developed a technique in which the medulla is exposed by excising a section of infarcted cortex and a multiple optical fiber flow probe, connected to a laser-Doppler flowmeter, is placed on the medulla. At the baseline RPP of 120 +/- 1 mmHg, RBF was 2.58 +/- 0.33 ml.min-1.g perfused kidney wt-1, and RMBF was 222 +/- 45 perfusion units. RPP was then decreased in consecutive 20-mmHg steps to 39 +/- 1 mmHg. At 80 +/- 1 mmHg, RBF remained at 89 +/- 4% of the baseline value; however, RMBF had decreased significantly (P < 0.05) to 73 +/- 4% of its baseline value. The efficiency of autoregulation of RBF and of RMBF within the RPP range of 120 to 80 mmHg was determined by calculating an autoregulatory index (AI) for each parameter using the formula AI = (%delta blood flow)/(%delta RPP). An AI of 0 indicates perfect autoregulation, and an index of 1 indicates a system with a fixed resistance. The AI for RBF averaged 0.33 +/- 0.12 over this pressure range and showed a significantly greater (P < 0.05) autoregulatory ability than did the RMBF (0.82 +/- 0.13). Decreasing perfusion pressure < 80 mmHg produced significant decreases in both RBF and RMBF.(ABSTRACT TRUNCATED AT 250 WORDS)


1984 ◽  
Vol 247 (3) ◽  
pp. R546-R551 ◽  
Author(s):  
D. Villarreal ◽  
J. O. Davis ◽  
R. H. Freeman ◽  
W. D. Sweet ◽  
J. R. Dietz

This study examines the role of the renal prostaglandin system in stimulus-secretion coupling for renal baroreceptor-dependent renin release in the anesthetized rat. Changes in plasma renin activity (PRA) secondary to suprarenal aortic constriction were evaluated in groups of rats with a single denervated nonfiltering kidney (DNFK) with and without pretreatment with meclofenamate. Suprarenal aortic constriction was adjusted to reduce renal perfusion pressure to either 100 or 50 mmHg. In addition, similar experiments were performed in rats with a single intact filtering kidney. Inhibition of prostaglandin synthesis with meclofenamate failed to block or attenuate the increase in PRA in response to the decrement in renal perfusion pressure after both severe and mild aortic constriction for both the DNFK and the intact-kidney groups. The adequacy of prostaglandin inhibition was demonstrated by complete blockade with meclofenamate of the marked hypotensive and hyperreninemic responses to sodium arachidonate. The results in the DNFK indicate that in the rat, renal prostaglandins do not function as obligatory mediators of the isolated renal baroreceptor mechanism for the control of renin release. Also the findings in the intact filtering kidney suggest that prostaglandins are not essential in the renin response of other intrarenal receptor mechanisms that also are stimulated by a reduction in renal perfusion pressure.


1992 ◽  
Vol 2 (9) ◽  
pp. 1371-1387 ◽  
Author(s):  
J C Romero ◽  
V Lahera ◽  
M G Salom ◽  
M L Biondi

The role of nitric oxide in renal function has been assessed with pharmacologic and physiologic interventions. Pharmacologically, the renal vasodilation and, to some extent, the natriuresis produced by endothelium-dependent vasodilators such as acetylcholine and bradykinin are mediated by nitric oxide and also by prostaglandins. However, prostaglandins and nitric oxide do not participate in the renal effects produced by endothelium-independent vasodilators such as atrial natriuretic peptide, prostaglandin I2, and nitroprusside. Physiologically, nitric oxide and prostaglandins exert a strong regulation on the effects produced by changes in renal perfusion pressure. Increments in renal perfusion pressure within the range of RBF autoregulation appear to inhibit prostaglandin synthesis while simultaneously enhancing the formation of nitric oxide. Nitric oxide modulates autoregulatory vasoconstriction and at the same time inhibits renin release. Conversely, a decrease of renal perfusion pressure to the limit of or below RBF autoregulation may inhibit the synthesis of nitric oxide but may trigger the release of prostaglandins, whose vasodilator action ameliorates the fall in RBF and stimulates renin release. Nitric oxide and prostaglandins are also largely responsible for mediating pressure-induced natriuresis. However, unlike prostaglandins, mild impairment of the synthesis of nitric oxide in systemic circulation produces a sustained decrease in sodium excretion, which renders blood pressure susceptible to be increased during high-sodium intake. This effect suggests that a deficiency in the synthesis of nitric oxide could constitute the most effective single disturbance to foster the development of a syndrome similar to that seen in salt-sensitive hypertension.


1977 ◽  
Vol 232 (2) ◽  
pp. F167-F172 ◽  
Author(s):  
E. H. Prosnitz ◽  
E. J. Zambraski ◽  
G. F. DiBona

Bilateral carotid artery occlusion results in an increase in mean arterial pressure, an increase in renal sympathetic nerve activity, and a redistribution of renal blood flow from inner to outer cortex. To elucidate the mechanism of the renal blood flow redistribution, carotid artery occlusion was performed in anesthetized dogs with the left kidney either having renal perfusion pressure maintained constant (aortic constriction) or having alpha-adrenergic receptor blockade (phenoxybenzamine); the right kidney of the same dog served to document the normal response. When renal perfusion pressure was maintained constant, renal blood flow distribution (microspheres) was unchanged by carotid artery occlusion. In the presence of renal alpha-adrenergic receptor blockade, carotid artery occlusion elicited the usual redistribution of renal blood flow from inner to outer cortex. The redistribution of renal blood flow observed after carotid artery occlusion is mediated by the increase in renal perfusion pressure rather than the increase in renal sympathetic nerve activity.


1991 ◽  
Vol 260 (2) ◽  
pp. F170-F176 ◽  
Author(s):  
H. B. Lin ◽  
D. B. Young ◽  
M. J. Smith

This study was designed to analyze the acute effects of hyperkalemia on renin release in the normal filtering kidney and the nonfiltering kidney. Plasma K was increased by acute intravenous KCl infusion. In the normal filtering kidney experiment plasma K was 5.7 vs. 3.5 meq/l. Hyperkalemia resulted in a 45% increase in renal blood flow (RBF) and a 35% increase in glomerular filtration rate (GFR) at the 120-mmHg pressure level. Renin release was significantly greater in the hyperkalemic group than in the control group (P less than 0.01) with the greatest effect over the lower pressure range. In the nonfiltering kidney experiment plasma K was 6.09 vs. 3.5 meq/l. RBF was 33% greater in the hyperkalemic than in the normokalemic group at the 130-mmHg pressure level. Renin release was also greater in the hyperkalemic group than in the normokalemic group (P less than 0.01). However, unlike the normal filtering kidney experiments, in the nonfiltering kidneys the difference in renin release was most prominent at the highest level of renal perfusion pressure. These experiments demonstrate that acute hyperkalemia can cause renal vasodilation and stimulate renin release in both filtering and nonfiltering kidney preparations and that potassium may affect renin release both through a direct effect on the juxtaglomerular cells and indirectly by affecting delivery of fluid and/or NaCl to the macula densa.


1981 ◽  
Vol 241 (2) ◽  
pp. F156-F161 ◽  
Author(s):  
H. Holdaas ◽  
G. F. DiBona ◽  
F. Kiil

The mechanism whereby renal nerves influence the renin-release response to aortic constriction was examined in a nonfiltering ureter-occluded kidney preparation in anesthetized dogs. The kidney was rendered nonfiltering by a combination of mannitol infusion and ureteral occlusion. Suprarenal aortic constriction reduced renal perfusion pressure to 61 +/- 7 mmHg and increased renin release from 16.7 +/- 4.1 to 26.1 +/- 6.0 U/min. At normal renal perfusion pressure, low-frequency renal nerve stimulation (0.25 Hz) increased renin release by 11.6 +/- 4.2 to 25.1 +/- 7.6 U/min. The effect of combined low-level renal nerve stimulation and aortic constriction on renin release was additive; renin release increased by 24.6 +/- 6.5 to 39.5 +/- 7.3 U/min. Propranolol or metoprolol, administered intrarenally at 2 microgram . min-1 . kg-1, abolished the renin-release response to low-level renal nerve stimulation at normal renal perfusion pressure. These data provide evidence that low-frequency renal nerve stimulation influences the renin-release response to reduction in renal perfusion pressure in a nonfiltering ureter-occluded kidney with an inoperative macula densa receptor mechanism. The neural effect on renin release at normal renal perfusion pressure is mediated via beta 1-adrenoceptors probably located on the juxtaglomerular granular cells.


1972 ◽  
Vol 50 (3) ◽  
pp. 215-227
Author(s):  
L. J. Belleau ◽  
D. Mailhot

The mechanism of contralateral natriuresis subsequent to reduction of renal perfusion pressure was studied. In control dogs a drop in the renal perfusion pressure caused a very significant increase in the arterial and renal venous plasma renin activity, as well as a significant contralateral natriuresis. Systemic blood pressure increased along with contralateral intrarenal resistance. Glomerular filtration rate and renal blood flow did not change in the opposite kidney.In "renin-depleted" dogs a comparable drop in the renal perfusion pressure failed to stimulate renal venous and arterial plasma renin activity. Contralateral natriuresis increased significantly as well as the systemic blood pressure. In the absence of renin, intrarenal resistance of the opposite kidney did not change. Contralateral glomerular filtration rate and renal blood flow remained unchanged.During reduction of renal perfusion pressure, the most significant findings were: (1) absence of renin release despite the stimulation in renin-depleted dogs, (2) increase in contralateral resistance explained by the renin–angiotensin system, (3) systemic blood pressure increment despite renin release inhibition, and (4) the renin–angiotensin system not directly responsible for the contralateral natriuresis following a reduction in the renal perfusion pressure.Contralateral natriuresis cannot be explained by changes in glomerular filtration, renal blood flow, or intrarenal resistance. It is suggested that the rise in blood pressure or another factor, possibly neural or humoral, could explain the contralateral natriuresis.


Sign in / Sign up

Export Citation Format

Share Document