Age- and Gender-Related Changes in Endothelin and Catecholamine Release, and in Autonomic Balance in Response to Head-Up Tilt

1997 ◽  
Vol 93 (4) ◽  
pp. 309-316 ◽  
Author(s):  
Michel White ◽  
Marc Courtemanche ◽  
Duncan J. Stewart ◽  
Mario Talajic ◽  
Ethel Mikes ◽  
...  

1. There is an increase in circulating levels of vasoconstrictive hormones and an alteration in baroreceptor responsiveness with aging. The role of changes in endothelium-dependent and -independent vasoconstrictive hormones in relation to age and gender, with simultaneous assessment of autonomic balance in response to head-up tilt, has been incompletely studied. 2. Sixteen young [25 ± 3 years (mean ± SEM)] and 16 older normal volunteers (68 ± 7 years) underwent a 30 min head-up tilt test at 60°. Haemodynamics were measured every 5 min and blood samples for neurohormone measurement were drawn at baseline, 5, 10, 15 and 30 min into the test. Heart rate variability was analysed in 5 min segments at the baseline, and during the test. The younger subjects exhibited a greater increase in heart rate and diastolic blood pressure, despite lower absolute levels of noradrenaline (norepinephrine) and endothelin-1. Analysis of heart rate variability yielded a decrease in both high- and low-frequency bands in the aged; power at low-frequency decreased only in the young subjects. The age-related differences in blood pressure and noradrenaline levels were markedly attenuated in the female subjects. In addition, endothelin-1 levels and power spectral measurements at low frequency were the lowest in younger females throughout the tilt. 3. Despite attenuated cardiovascular response to tilt, both systemic adrenergic ‘drive’ and endothelin-1 levels increase in parallel with aging. Thus, endothelium-dependent and -independent vasoconstrictive hormone levels increase with age in the resting state and in response to neurohumoral stimulation in humans.

Cephalalgia ◽  
1995 ◽  
Vol 15 (6) ◽  
pp. 504-510 ◽  
Author(s):  
M De Marinis ◽  
S Strano ◽  
M Granata ◽  
C Urani ◽  
S Lino ◽  
...  

Twenty-four hour ECG Holter and blood-pressure monitorings were performed in eight patients suffering from cluster headache. Spectral analysis of heart-rate fluctuation was used to assess the autonomic balance under basal conditions, after head-up tilt, and during a spontaneous attack. Normal autonomic balance was found at rest and during sympathetic activation obtained with head-up tilt in the interparoxysmal period. Before the onset of headache, an increase in the low-frequency (LF) component of the power spectrum was apparent in all patients. This sign of sympathetic activation was followed by an increase in the high-frequency (HF) component that developed about 2000 beats after the onset of headache and rapidly overcame the LF component until the end of pain. Significant differences were found when comparing the spectral parameters [total spectral values (TP), power of the LF and HF components and LF/HF ratio] obtained before, during and after headache. During the attack, blood pressure increased and heart rate decreased in all subjects. There appears to be a primary activation of both sympathetic and parasympathetic functions in cluster headache attacks. The sympathetic component seems to be involved mostly in the development of the attack, whereas the parasympathetic activation seems to occur, following the onset of the attack, independently of the pain.


Medicina ◽  
2021 ◽  
Vol 58 (1) ◽  
pp. 28
Author(s):  
C. (Linda) M. C. van Campen ◽  
Peter C. Rowe ◽  
Frans C. Visser

Background and Objectives: Symptoms and hemodynamic findings during orthostatic stress have been reported in both long-haul COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), but little work has directly compared patients from these two groups. To investigate the overlap in these clinical phenotypes, we compared orthostatic symptoms in daily life and during head-up tilt, heart rate and blood pressure responses to tilt, and reductions in cerebral blood flow in response to orthostatic stress in long-haul COVID-19 patients, ME/CFS controls, and healthy controls. Materials and Methods: We compared 10 consecutive long-haul COVID-19 cases with 20 age- and gender-matched ME/CFS controls with postural tachycardia syndrome (POTS) during head-up tilt, 20 age- and gender-matched ME/CFS controls with a normal heart rate and blood pressure response to head-up tilt, and 10 age- and gender-matched healthy controls. Identical symptom questionnaires and tilt test procedures were used for all groups, including measurement of cerebral blood flow and cardiac index during the orthostatic stress. Results: There were no significant differences in ME/CFS symptom prevalence between the long-haul COVID-19 patients and the ME/CFS patients. All long-haul COVID-19 patients developed POTS during tilt. Cerebral blood flow and cardiac index were more significantly reduced in the three patient groups compared with the healthy controls. Cardiac index reduction was not different between the three patient groups. The cerebral blood flow reduction was larger in the long-haul COVID-19 patients compared with the ME/CFS patients with a normal heart rate and blood pressure response. Conclusions: The symptoms of long-haul COVID-19 are similar to those of ME/CFS patients, as is the response to tilt testing. Cerebral blood flow and cardiac index reductions during tilt were more severely impaired than in many patients with ME/CFS. The finding of early-onset orthostatic intolerance symptoms, and the high pre-illness physical activity level of the long-haul COVID-19 patients, makes it unlikely that POTS in this group is due to deconditioning. These data suggest that similar to SARS-CoV-1, SARS-CoV-2 infection acts as a trigger for the development of ME/CFS.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 860 ◽  
Author(s):  
Marcos Hortelano ◽  
Richard Reilly ◽  
Francisco Castells ◽  
Raquel Cervigón

Orthostatic intolerance syndrome occurs when the autonomic nervous system is incapacitated and fails to respond to the demands associated with the upright position. Assessing this syndrome among the elderly population is important in order to prevent falls. However, this problem is still challenging. The goal of this work was to determine the relationship between orthostatic intolerance (OI) and the cardiovascular response to exercise from the analysis of heart rate and blood pressure. More specifically, the behavior of these cardiovascular variables was evaluated in terms of refined composite multiscale fuzzy entropy (RCMFE), measured at different scales. The dataset was composed by 65 older subjects, 44.6% (n = 29) were OI symptomatic and 55.4% (n = 36) were not. Insignificant differences were found in age and gender between symptomatic and asymptomatic OI participants. When heart rate was evaluated, higher differences between groups were observed during the recovery period immediately after exercise. With respect to the blood pressure and other hemodynamic parameters, most significant results were obtained in the post-exercise stage. In any case, the symptomatic OI group exhibited higher irregularity in the measured parameters, as higher RCMFE levels in all time scales were obtained. This information could be very helpful for a better understanding of cardiovascular instability, as well as to recognize risk factors for falls and impairment of functional status.


Author(s):  
Arundhati Goley ◽  
A. Mooventhan ◽  
NK. Manjunath

Abstract Background Hydrotherapeutic applications to the head and spine have shown to improve cardiovascular and autonomic functions. There is lack of study reporting the effect of either neutral spinal bath (NSB) or neutral spinal spray (NSS). Hence, the present study was conducted to evaluate and compare the effects of both NSB and NSS in healthy volunteers. Methods Thirty healthy subjects were recruited and randomized into either neutral spinal bath group (NSBG) or neutral spinal spray group (NSSG). A single session of NSB, NSS was given for 15 min to the NSBG and NSSG, respectively. Assessments were taken before and after the interventions. Results Results of this study showed a significant reduction in low-frequency (LF) to high-frequency (HF) (LF/HF) ratio of heart rate variability (HRV) spectrum in NSBG compared with NSSG (p=0.026). Within-group analysis of both NSBG and NSSG showed a significant increase in the mean of the intervals between adjacent QRS complexes or the instantaneous heart rate (HR) (RRI) (p=0.002; p=0.009, respectively), along with a significant reduction in HR (p=0.002; p=0.004, respectively). But, a significant reduction in systolic blood pressure (SBP) (p=0.037) and pulse pressure (PP) (p=0.017) was observed in NSSG, while a significant reduction in diastolic blood pressure (DBP) (p=0.008), mean arterial blood pressure (MAP) (p=0.008) and LF/HF ratio (p=0.041) was observed in NSBG. Conclusion Results of the study suggest that 15 min of both NSB and NSS might be effective in reducing HR and improving HRV. However, NSS is particularly effective in reducing SBP and PP, while NSB is particularly effective in reducing DBP and MAP along with improving sympathovagal balance in healthy volunteers.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ke-Vin Chang ◽  
Wen-Shiang Chen ◽  
Ruey-Meei Wu ◽  
Ssu-Yuan Chen ◽  
Hsiu-Yu Shen ◽  
...  

The study aim was to assess sympathetic vasomotor response (SVR) by using pulsed wave Doppler (PWD) ultrasound in patients with multiple system atrophy (MSA) and correlate with the tilt table study. We recruited 18 male patients and 10 healthy men as controls. The SVR of the radial artery was evaluated by PWD, using inspiratory cough as a provocative maneuver. The response to head-up tilt was studied by a tilt table with simultaneous heart rate and blood pressure recording. The hemodynamic variables were compared between groups, and were examined by correlation analysis. Regarding SVR, MSA patients exhibited a prolonged latency and less heart rate acceleration following inspiratory cough. Compared with the tilt table test, the elevation of heart rate upon SVR was positively correlated to the increase of heart rate after head-up tilt. The correlation analysis indicated that the magnitude of blood pressure drop from supine to upright was positively associated with the SVR latency but negatively correlated with the heart rate changes upon SVR. The present study demonstrated that blunted heart rate response might explain MSA's vulnerability to postural challenge. PWD may be used to predict cardiovascular response to orthostatic stress upon head-up tilt in MSA patients.


2004 ◽  
Vol 96 (6) ◽  
pp. 2333-2340 ◽  
Author(s):  
Tomi Laitinen ◽  
Leo Niskanen ◽  
Ghislaine Geelen ◽  
Esko Länsimies ◽  
Juha Hartikainen

In elderly subjects, heart rate responses to postural change are attenuated, whereas their vascular responses are augmented. Altered strategy in maintaining blood pressure homeostasis during upright position may result from various cardiovascular changes, including age-related cardiovascular autonomic dysfunction. This exploratory study was conducted to evaluate impact of age on cardiovascular autonomic responses to head-up tilt (HUT) in healthy subjects covering a wide age range. The study population consisted of 63 healthy, normal-weight, nonsmoking subjects aged 23–77 yr. Five-minute electrocardiogram and finger blood pressure recordings were performed in the supine position and in the upright position 5 min after 70° HUT. Stroke volume was assessed from noninvasive blood pressure signals by the arterial pulse contour method. Heart rate variability (HRV) and systolic blood pressure variability (SBPV) were analyzed by using spectral analysis, and baroreflex sensitivity (BRS) was assessed by using sequence and cross-spectral methods. Cardiovascular autonomic activation during HUT consisted of decreases in HRV and BRS and an increase in SBPV. These changes became attenuated with aging. Age correlated significantly with amplitude of HUT-stimulated response of the high-frequency component ( r = -0.61, P < 0.001) and the ratio of low-frequency to high-frequency power of HRV ( r = -0.31, P < 0.05) and indexes of BRS (local BRS: r = -0.62, P < 0.001; cross-spectral baroreflex sensitivity in the low-frequency range: r = -0.38, P < 0.01). Blood pressure in the upright position was maintained well irrespective of age. However, the HUT-induced increase in heart rate was more pronounced in the younger subjects, whereas the increase in peripheral resistance was predominantly observed in the older subjects. Thus it is likely that whereas the dynamic capacity of cardiac autonomic regulation decreases, vascular responses related to vasoactive mechanisms and vascular sympathetic regulation become augmented with increasing age.


2020 ◽  
Vol 15 (1) ◽  
pp. 6-10
Author(s):  
Sadia Afrin Rimi ◽  
Shamima Sultana ◽  
Iffat Rezwana ◽  
Sultana Ferdousi

Background: Tilt table test is used for the last few decades to detect cause in unexplained syncope. The response to tilting may vary physiologically with obesity. Objective: To assess the relationship of BMI to cardiovascular response to tilting. Methods: This experimental study was conducted from March 2019 to Feb 2020 on 90 healthy subjects with different BMI. Fifty one subjects of both gender with BMI 18.5-24.9 kg/m2 were included in the non-obese group and 39 subjects of both gender with BMI of 25-29.9 kg/m2 were included in overweight group and they were further subdivided into male and female. Head up tilting was done for 10 minutes at 600 by using a motorized tilt table. Systolic blood pressure (SBP), diastolic blood pressure (DBP) were recorded by an automatic sphygmomanometer. Heart rate (HR) and peripheral capillary oxygen saturation (SpO2) were measured by a pulse oximeter. For statistical analysis, Independent sample ‘t’ test, Pearson’s correlation test and Chi square tests were applied. Results: Significantly smaller rise of heart rate was observed in overweight males and greater fall of systolic blood pressure was observed in overweight females. Conclusion: This study concluded that over weight is associated with reduced orthostatic tolerance to head up tilt test in both genders. J Bangladesh Soc Physiol. 2020, June; 15(1): 6-10


1998 ◽  
Vol 275 (1) ◽  
pp. H213-H219 ◽  
Author(s):  
Michael V. Højgaard ◽  
Niels-Henrik Holstein-Rathlou ◽  
Erik Agner ◽  
Jørgen K. Kanters

Frequency domain analysis of heart rate variability (HRV) has been proposed as a semiquantitative method for assessing activities in the autonomic nervous system. We examined whether absolute powers, normalized powers, and the low frequency-to-high frequency ratio (LF/HF) derived from the HRV power spectrum could detect shifts in autonomic balance in a setting with low sympathetic nervous tone. Healthy subjects were examined for 3 h in the supine position during 1) control conditions ( n = 12), 2) acute β-blockade ( n = 11), and 3) chronic β-blockade ( n = 10). Heart rate fell during the first 40 min of the control session (72 ± 2 to 64 ± 2 beats/min; P < 0.005) and was even lower during acute and chronic β-blockade (56 ± 2 beats/min; P < 0.005). The powers of all spectral areas rose during the first 60 min in all three settings, more so with β-blockade ( P < 0.05). LF/HF was found to contain the same information as powers expressed in normalized units. LF/HF detected the shift in autonomic balance induced by β-blockade but not the change induced by supine position. In conclusion, none of the investigated measures derived from power spectral analysis comprehensively and consistently described the changes in autonomic balance.


1998 ◽  
Vol 12 (4) ◽  
pp. 253-257 ◽  
Author(s):  
F Jaquet ◽  
IB Goldstein ◽  
D Shapir

Sign in / Sign up

Export Citation Format

Share Document