Effects of obesity on endothelium-dependent reactivity during acute nitric oxide synthase inhibition: modulatory role of endothelin

2002 ◽  
Vol 103 (s2002) ◽  
pp. 13S-15S ◽  
Author(s):  
Tobias TRAUPE ◽  
Livius V. D'USCIO ◽  
Klaus MUENTER ◽  
Henning MORAWIETZ ◽  
Wilhelm VETTER ◽  
...  

This study investigated vascular reactivity in response to acetylcholine, in the presence of acute inhibition of nitric oxide synthase, in the carotid artery and aorta of obese C57Bl6/J mice fed on a high-fat diet for 30 weeks, and of control mice. A subgroup of obese animals was also treated with the ETA receptor antagonist darusentan (50mg·kg-1·day-1). In vascular rings from control animals, acetylcholine caused endothelium-dependent contractions in the carotid artery, but not in the aorta. In vascular rings from obese mice, contractility to acetylcholine was also evident in the aorta, and that in the carotid artery was increased compared with control mice. ETA receptor blockade by darusentan treatment of the obese mice prevented enhanced vasoconstriction to acetylcholine, resulting in mild vasodilatation. Thus obesity increases endothelium-dependent vasoconstriction in the absence of endothelial nitric oxide. This effect can be completely prevented by chronic ETA receptor blockade, suggesting that endothelin modulates increased endothelium-dependent vasoconstriction in obesity.

Circulation ◽  
1997 ◽  
Vol 96 (7) ◽  
pp. 2254-2261 ◽  
Author(s):  
Iftikhar J. Kullo ◽  
Geza Mozes ◽  
Robert S. Schwartz ◽  
Peter Gloviczki ◽  
Thomas B. Crotty ◽  
...  

2015 ◽  
Vol 37 (8) ◽  
pp. 633-642 ◽  
Author(s):  
Filiz Basralı ◽  
Günnur Koçer ◽  
Pınar Ülker Karadamar ◽  
Seher Nasırcılar Ülker ◽  
Leyla Satı ◽  
...  

2020 ◽  
Vol 98 (5) ◽  
pp. 275-281 ◽  
Author(s):  
L.A. Mys ◽  
N.A. Strutynska ◽  
Y.V. Goshovska ◽  
V.F. Sagach

Hydrogen sulfide (H2S) is an endogenous gas transmitter with profound effects on the cardiovascular system. We hypothesized that stimulation of H2S synthesis might alleviate age-associated changes in vascular reactivity. Pyridoxal-5-phosphate (PLP), the coenzyme of H2S-synthesizing enzymes, was administrated to old male Wistar rats per os at a dose of 0.7 mg/kg body mass once a day for 2 weeks. H2S content in the aortic tissue, markers of oxidative stress, inducible nitric oxide synthase (iNOS) and constitutive nitric oxide synthase (cNOS), arginase activities, and endothelium-dependent vasorelaxation of the aortic rings were studied. Our results showed that PLP restored endogenous H2S and low molecular weight S-nitrosothiol levels in old rat aorta to the levels detected in adults. PLP significantly reduced diene conjugate content, hydrogen peroxide and peroxynitrite generation rates, and iNOS and arginase activity in the aortic tissue of old rats. PLP also greatly improved acetylcholine-induced relaxation of old rat aorta (47.7% ± 4.8% versus 18.4% ± 4.1% in old rats, P < 0.05) that was abolished by NO inhibition with N-nitro-l-arginine methyl ester hydrochloride (L-NAME) or H2S inhibition with O-carboxymethylhydroxylamine (O-CMH). Thus, PLP might be used for stimulation of endogenous H2S synthesis and correction of oxidative and nitrosative stress and vessel tone dysfunction in aging and age-associated diseases.


2002 ◽  
Vol 22 (5) ◽  
pp. 612-619 ◽  
Author(s):  
Gary H. Danton ◽  
Ricardo Prado ◽  
Jessie Truettner ◽  
Brant D. Watson ◽  
W. Dalton Dietrich

Although vascular dysregulation has been documented in patients with extracranial vascular disease, transient ischemic attacks, and stroke, the pathomechanisms are poorly understood. To model thromboembolic stroke in rats, photochemically induced nonocclusive common carotid artery thrombosis (CCAT) was used to generate a platelet thrombus in the carotid artery of anesthetized rats. After CCAT, platelet aggregates break off the thrombus, travel to the distal cerebral vasculature, damage blood vessels, and cause small infarctions. The authors hypothesized that deficits in the endothelial nitric oxide synthase (eNOS) pathway may be responsible for vascular dysfunction after embolic stroke. To examine the functional status of the eNOS system, they measured eNOS-dependent dilation after CCAT by applying acetylcholine through a cranial window over the middle cerebral artery. The authors also measured eNOS mRNA and protein in the middle cerebral artery to determine whether functional changes were caused by alterations in expression. eNOS-dependent dilation was reduced at 6 hours, elevated at 24 hours, and returned to baseline 72 hours after CCAT. Endothelial nitric oxide synthase mRNA increased at 2 hours and was followed by a rise in protein 24 hours after CCAT. Changes in the eNOS system may account for some of the observed vascular deficits in patients with cerebrovascular disease.


2003 ◽  
Vol 23 (3) ◽  
pp. 371-380 ◽  
Author(s):  
Haruki Yamakawa ◽  
Miroslava Jezova ◽  
Hiromichi Ando ◽  
Juan M. Saavedra

Inhibition of angiotensin II AT1 receptors protects against stroke, reducing the cerebral blood flow decrease in the periphery of the ischemic lesion. To clarify the mechanism, spontaneously hypertensive rats (SHR) and normotensive control Wistar Kyoto (WKY) rats were pretreated with the AT1 receptor antagonist candesartan (0.3 mg · kg−1 · d−1) for 28 days, a treatment identical to that which protected SHR from brain ischemia, and the authors studied middle cerebral artery (MCA) and common carotid morphology, endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) messenger RNA (mRNA), and protein expression in cerebral microvessels, principal arteries of the Willis polygon, and common carotid artery. The MCA and common carotid artery of SHR exhibited inward eutrophic remodeling, with decreased lumen diameter and increased media thickness when compared with WKY rats. In addition, there was decreased eNOS and increased iNOS protein and mRNA in common carotid artery, circle of Willis, and brain microvessels of SHR when compared with WKY rats. Both remodeling and alterations in eNOS and iNOS expression in SHR were completely reversed by long-term AT1 receptor inhibition. The hemodynamic, morphologic, and biochemical alterations in hypertension associated with increased vulnerability to brain ischemia are fully reversed by AT1 receptor blockade, indicating that AT1 receptor activation is crucial for the maintenance of the pathologic alterations in cerebrovascular circulation during hypertension, and that their blockade may be of therapeutic advantage.


2014 ◽  
Vol 28 (8) ◽  
pp. 494-499 ◽  
Author(s):  
J Sugawara ◽  
Y Saito ◽  
S Maeda ◽  
M Yoshizawa ◽  
H Komine ◽  
...  

2005 ◽  
Vol 46 (4) ◽  
pp. 438-444 ◽  
Author(s):  
A Elizabeth Linder ◽  
David S Weber ◽  
Steven E Whitesall ◽  
Louis G D??Alecy ◽  
R Clinton Webb

Sign in / Sign up

Export Citation Format

Share Document