Angiotensin II inhibits DDAH1–nNOS signaling via AT1R and μOR dimerization to modulate blood pressure control in the central nervous system

2019 ◽  
Vol 133 (23) ◽  
pp. 2401-2413 ◽  
Author(s):  
Gwo-Ching Sun ◽  
Tzyy-Yue Wong ◽  
Hsin-Hung Chen ◽  
Chiu-Yi Ho ◽  
Tung-Chen Yeh ◽  
...  

Abstract G protein-coupled receptors (GPCRs) are important drug targets. Blocking angiotensin II (Ang II) type 1 receptor signaling alleviates hypertension and improves outcomes in patients with heart failure. Changes in structure and trafficking of GPCR, and desensitization of GPCR signaling induce pathophysiological processes. We investigated whether Ang II, via induction of AT1R and μ-opioid receptor (μOR) dimerization in the nucleus tractus solitarius (NTS), leads to progressive hypertension. Ang II signaling increased μOR and adrenergic receptor α2A (α2A-AR) heterodimer levels and decreased expression of extracellular signal-regulated kinases 1/2T202/Y204, ribosomal protein S6 kinaseT359/S363, and nNOSS1416 phosphorylation. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) expression was abolished in the NTS of adult spontaneously hypertensive rats (SHRs). Endomorphin-2 was overexpressed in NTS of adult SHRs compared with that in 6-week-old Wistar-Kyoto rats (WKY). Administration of μOR agonist into the NTS of WKY increased blood pressure (BP), decreased nitric oxide (NO) production, and decreased DDAH1 activity. μOR agonist significantly reduced the activity of DDAH1 and decreased neuronal NO synthase (nNOS) phosphorylation. The AT1R II inhibitor, losartan, significantly decreased BP and abolished AT1R-induced formation of AT1R and μOR, and α2A-AR and μOR, heterodimers. Losartan also significantly increased the levels of nNOSS1416 phosphorylation and DDAH1 expression. These results show that Ang II may induce expression of endomorphin-2 and abolished DDAH1 activity by enhancing the formation of AT1R and μOR heterodimers in the NTS, leading to progressive hypertension.

1986 ◽  
Vol 250 (2) ◽  
pp. R193-R198 ◽  
Author(s):  
R. Casto ◽  
M. I. Phillips

Microinjection of angiotensin II (ANG II) into the nucleus tractus solitarius (NTS) has been shown to produce a dose-dependent increase in blood pressure and heart rate. We have tested the effect of subpressor infusions of ANG II (10 ng . kg-1 . min-1) in the NTS on reflex bradycardia after intravenous administration of the vasoconstrictor phenylephrine (1-12 micrograms) in normotensive urethan-anesthetized rats. ANG II within the brain is thought to contribute to the decreased baroreflex sensitivity in spontaneously hypertensive rats (SHR). The sensitivity of the baroreflex was significantly decreased by the infusion of ANG II (1.01 +/- 0.08) compared with control (2.41 +/- 0.51) in the normotensive animals. Baroreflex sensitivity was significantly decreased in SHR (0.40 +/- 0.21) compared with normotensive animals. We conclude that ANG II within the NTS can inhibit the function of baroreceptor reflexes in normotensive animals, suggesting that the endogenous peptide may perform an inhibitory role in the baroreflex arc, and this is further evidence that central ANG II is involved in blood pressure of SHR.


1985 ◽  
Vol 63 (10) ◽  
pp. 1258-1262 ◽  
Author(s):  
Corey B. Toal ◽  
Frans H. H. Leenen

Blood pressure responsiveness to iv noradrenaline and angiotensin II was studied in conscious, freely moving, age-matched spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats from 4 to 16 weeks of age. At 4 and 6 weeks the SHR showed small, but nonsignificant increases in responsiveness compared with WKY to both noradrenaline and angiotensin II. At 8 weeks they exhibited similar responses to the WKY. Subsequently, at 12 and 16 weeks decreased responsiveness to noradrenaline (nonsignificant) and angiotensin II (p < 0.05 at 12 and 16 weeks) was observed in SHR versus WKY. At 16 weeks of age, hexamethonium caused potentiation of the blood pressure response to noradrenaline and angiotensin II, but to the same degree in the two strains. Captopril at this age did not elicit potentiation to noradrenaline or angiotensin II in either strain. These results indicate that there is no rise in blood pressure responsiveness to circulating pressor agents, parallel to the development of hypertension in SHR. Increased receptor occupancy or more active attenuating reflexes in SHR versus WKY appear not to be involved in the absence of hyperresponsiveness in intact consious SHR at 16 weeks of age.


2011 ◽  
Vol 12 (4) ◽  
pp. 394-403 ◽  
Author(s):  
Silmara Ciampone ◽  
Rafael Borges ◽  
Ize P de Lima ◽  
Flávia F Mesquita ◽  
Elizabeth C Cambiucci ◽  
...  

Observations have been made regarding the effects of long-term exercise training on blood pressure, renal sodium handling and renal renin–angiotensin–aldosterone (RAS) intracellular pathways in conscious, trained Okamoto–Aoki spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKy) normotensive rats, compared with appropriate age-matched sedentary SHR and WKy. To evaluate the influence of exercise training on renal function and RAS, receptors and intracellular angiotensin II (AngII) pathway compounds were used respectively, and lithium clearance and western blot methods were utilised. The current study demonstrated that increased blood pressure in SHR was blunted and significantly reduced by long-term swim training between the ages of 6 and 16 weeks. Additionally, the investigators observed an increased fractional urinary sodium excretion in trained SHR (SHRT) rats, compared with sedentary SHR (SHRS), despite a significantly decreased creatinine clearance (CCr). Furthermore, immunoblotting analysis demonstrated a decreased expression of AT1R in the entire kidney of TSHR rats, compared with SSHR. Conversely, the expression of the AT2R, in both sedentary and trained SHR, was unchanged. The present study may indicate that, in the kidney, long-term exercise exerts a modulating effect on AngII receptor expression. In fact, the present study indicates an association of increasing natriuresis, reciprocal changes in renal AngII receptors and intracellular pathway proteins with the fall in blood pressure levels observed in TSHR rats compared with age-matched SSHR rats.


1993 ◽  
Vol 265 (6) ◽  
pp. F845-F852 ◽  
Author(s):  
C. Chatziantoniou ◽  
X. Ruan ◽  
W. J. Arendshorst

In previous studies [C. Chatziantoniou and W.J. Arendshorst. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 32): F573-F580, 1992], we reported that vasodilator prostaglandins (PGs) are defective in buffering the angiotensin II (ANG II)-induced vasoconstriction in the renal vasculature of spontaneously hypertensive rats (SHR). The purpose of the present study was to determine whether this defect in SHR kidneys is specific to PGs or generalized to the action of vasodilators and to gain insight into which intracellular signal(s) mediates this abnormality. Renal blood flow (RBF; electromagnetic flowmetry) was measured in 7 wk-old anesthetized, euvolemic SHR and normotensive Wistar-Kyoto (WKY) rats pretreated with indomethacin to avoid interactions with endogenous PGs. ANG II (2 ng) was injected into the renal artery before and during continuous intrarenal infusion of fenoldopam [DA1 receptor agonist and G protein-dependent stimulator of adenosine 3',5'-cyclic monophosphate (cAMP)], forskolin (G protein-independent stimulator of cAMP), dibutyryl-cAMP (soluble cAMP), and acetylcholine (cGMP stimulator). Each vasodilator was infused at a low dose that did not affect baseline arterial pressure or RBF. In the control period, ANG II reduced RBF by 50% in both strains. Infusion of fenoldopam significantly blunted the ANG II-induced vasoconstriction in WKY, but not in SHR. In contrast, forskolin, dibutyryl-cAMP, and acetylcholine effectively buffered the vasoconstriction due to ANG II in both SHR and WKY. These results suggest that renal vasodilators acting through receptor binding to stimulate the cAMP signaling pathway are ineffective in counteracting the ANG II-induced vasoconstriction in SHR kidneys. (ABSTRACT TRUNCATED AT 250 WORDS)


1977 ◽  
Vol 232 (4) ◽  
pp. H426-H433 ◽  
Author(s):  
W. E. Hoffman ◽  
M. I. Phillips ◽  
P. G. Schmid

The brain isorenin angiotensin system has been implicated in the development of spontaneous hypertension by several investigators. The experiments reported here were designed to test the responsiveness of unanesthetized spontaneous hypertensive (SH) rats to intracerebroventricular angiotensin II injections compared to Wistar-Kyoto (WK) normotensive controls. The results indicate that there is no difference between SH and WK animals in drinking responses or antidiuretic hormone release to central angiotensin II injections; however, an increased pressor responsiveness to intraventricular angiotensin II in SH as compared to WK was observed. The results of intravenous infusions of pressor substances in these experiments and reports by other investigators suggest that the increased blood pressure effects to central angiotensin are due to three possible factors: 1) increased vascular responsiveness of SH to vasoconstrictor substances in general, 2) increased vascular sensitivity of SH rats to sympathetic outflow, and 3) decreased baroreceptor reflexes to acute increases in blood pressure. We suggest that the brain isorenin-angiotensin system may be involved in spontaneous hypertension by increased production of angiotensin II or by activation of a potentiated sympathetic system, but not by a generalized increased sensitivity of brain receptors to central angiotensin.


1991 ◽  
Vol 260 (5) ◽  
pp. F657-F662
Author(s):  
M. Levi ◽  
W. L. Henrich

Dietary Ca is an important modulator of blood pressure in the spontaneously hypertensive rat (SHR). Since the kidney plays a key role in the pathogenesis of hypertension, the purpose of this study was to determine the potential renal mechanisms of the blood pressure-lowering effect of increasing dietary Ca content. In 21-day-old SHR fed 0.1 vs. 3.6% Ca diet for 14 days, increasing dietary Ca had no significant effects on basal [704 +/- 50 in 0.1% Ca vs. 784 +/- 61 ng angiotensin I (ANG I).mg-1.h-1 in 3.6% Ca, P = not significant (NS)], isoproterenol-stimulated (1,057 +/- 52 in 0.1% Ca vs. 1,104 +/- 59 ng ANG I.mg-1.h-1 in 3.6% Ca, P = NS), or angiotensin II (ANG II)-inhibited (370 +/- 50 in 0.1% Ca vs. 411 +/- 39 ng ANG I.mg-1.h-1 in 3.6% Ca, P = NS) renal superficial cortical slice renin release. In contrast, in apical brush-border membrane (BBM) vesicles isolated from the superficial cortex, increasing dietary Ca caused a significant decrease in ANG II binding, which was mediated by a decrease in the number of binding sites (Bmax, 376 +/- 14 in 0.1% Ca vs. 234 +/- 6 fmol ANG II/mg BBM protein in 3.6% Ca, P less than 0.01), and no change in the affinity [dissociation constant (Kd), 17.8 +/- 1.4 in 0.1% Ca vs. 13.4 +/- 2.8 nM ANG II in 3.6% Ca, P = NS].(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 250 (6) ◽  
pp. R960-R972 ◽  
Author(s):  
J. E. Hall

Angiotensin II (ANG II) is one of the body's most powerful regulators of Na excretion, operating through extrarenal mechanisms, such as stimulation of aldosterone secretion, as well as intrarenal mechanisms. Considerable evidence suggests that the intrarenal actions of ANG II are quantitatively more important than changes in aldosterone secretion in the normal day-to-day regulation of Na balance and arterial pressure. ANG II at physiological concentrations increases proximal tubular reabsorption, but further studies are needed to determine whether ANG II also has an important effect on more distal tubular segments. ANG II also markedly constricts efferent arterioles, tending to increase Na reabsorption by altering peritubular capillary physical forces and also helping to prevent excessive decreases in glomerular filtration rate. ANG II may also decrease Na excretion and increase urine concentrating ability by reducing renal medullary blood flow. Regulation of Na excretion by ANG II is closely linked with arterial pressure control and volume homeostasis through the renal pressure natriuresis mechanism. Under many physiological conditions, such as changes in Na intake, ANG II greatly multiplies the effectiveness of the pressure natriuresis mechanism to prevent fluctuations in body fluid volume and arterial pressure. In circumstances associated with circulatory depression, such as decreased cardiac function, reductions in blood pressure and increased ANG II formation cause Na retention until arterial pressure is restored to normal. However, in pathophysiological conditions in which ANG II is inappropriately elevated, increased arterial pressure (hypertension) is required for the kidney to "escape" the potent antinatriuretic actions of ANG II and to return Na excretion to normal via the pressure natriuresis mechanism.


2020 ◽  
Vol 33 (5) ◽  
pp. 471-471
Author(s):  
Ting-jun Wang ◽  
Wan-ru Chen ◽  
Xu Lin ◽  
Gui-li Lian ◽  
Chang-sheng Xu ◽  
...  

Abstract Background To study the effects of prehypertensive losartan treatment on blood pressure, resistance vessel remodeling, and angiotensin II type 1 receptor (AT1R) expression in adult spontaneously hypertensive rats (SHRs). Methods Four-week-old SHR and Wistar-Kyoto rats were randomly divided into losartan-treated and untreated groups. Losartan was administrated by gavage from 4 to 10 weeks old. Blood pressure was monitored by the tail-cuff method till 26 weeks old. The third grade mesenteric arteries were then isolated. Vessel structure, relaxation reactivity, angiotensin II type 1 receptor expression, and angiotensin II levels were analyzed. Results Losartan treatment from 4 to 10 weeks of age significantly lowered systolic blood pressure from 10 to 26 weeks in SHR. At 26 weeks old, wall thickness to lumen radius and wall area to lumen area of mesenteric arteries were significantly lower in losartan-treated than untreated SHR (P &lt; 0.01). Maximum relaxation to acetylcholine and its pD2 were increased in losartan-treated compared to untreated SHR (P &lt; 0.01). Angiotensin II type 1 receptor mRNA and protein levels were significantly reduced in losartan-treated SHR (P &lt; 0.01). However, angiotensin II levels in plasma and mesenteric arteries of losartan-treated SHR were higher than those of untreated SHR (P &lt; 0.05). Losartan treatment lowered systolic blood pressure in Wistar-Kyoto at the age of 10 weeks (P &lt; 0.05), but had no significant effect on blood pressure after 14 weeks or mesenteric arteries at 26 weeks. Conclusions Blood pressure reduction induced by prehypertensive losartan treatment ameliorates resistance vessel remodeling and downregulates angiotensin II type 1 receptor expression in adult SHR.


1991 ◽  
Vol 260 (5) ◽  
pp. R977-R984 ◽  
Author(s):  
H. Muratani ◽  
D. B. Averill ◽  
C. M. Ferrario

The spontaneously hypertensive rat (SHR) exhibits an enhanced activity of the peripheral sympathetic and brain renin-angiotensin systems. In the present experiments, we evaluated the cardiovascular response of angiotensin II (ANG II) microinjected in the rostral (RVLM) and the caudal (CVLM) ventrolateral medulla of age-matched (14-16 wk old) SHR and Wistar-Kyoto (WKY) rats. Responses of mean arterial pressure (MAP) and heart rate (HR) to microinjection of ANG II (5, 20 and 100 pmol) into histologically verified sites of the RVLM and CVLM were compared with those obtained by injections of the excitatory agent L-glutamate (2 nmol) at the same site. In both strains, ANG II elicited dose-dependent pressor responses in the RVLM and depressor responses in the CVLM, both of which peaked at a dose of 20 pmol. The magnitude of the fall in MAP produced by injections of ANG II into the CVLM were significantly (P less than 0.01) greater in SHR than in WKY group. In contrast, peak pressor responses elicited by injection of ANG II into the RVLM were of similar magnitude in the two groups. When compared with the MAP response produced by L-glutamate injections, responses to ANG II microinjection were slower in onset, and the latency to the peak response was longer. Ganglionic blockade with hexamethonium bromide prevented the effect of ANG II injection in the RVLM. This study provides evidence that ANG II acts as an excitatory agent at sites within the ventrolateral medulla that determine the vasomotor control of blood pressure in both normotensive and hypertensive rats.


1985 ◽  
Vol 249 (3) ◽  
pp. R341-R347 ◽  
Author(s):  
R. Casto ◽  
M. I. Phillips

We have reported that microinjection of angiotensin II (ANG II) into the nucleus tractus solitarius of urethan-anesthetized normotensive rats produces an increase in mean arterial pressure (MAP) over the dose range 50-500 pmol. The effect in spontaneously hypertensive rats (SHR) is now reported. Over the range 100-500 pmol SHR exhibit increases in MAP and heart rate greater than Wistar-Kyoto or Sprague-Dawley rats. SHR did not exhibit exaggerated responses to intravenous phenylephrine, suggesting a central site of increased responsiveness to ANG II. We also found depressor effects in Sprague-Dawley at lower doses (0.1 and 1 pmol). The decreases in MAP were extremely variable and not dose related. A selected dose of additional neuropeptides identified in the NTS was tested. Somatostatin, bradykinin, and vasoactive intestinal peptide (0.5 nmol) were without cardiovascular effects. Oxytocin and vasopressin, however, produced significant increases in MAP. Substance P produced a very small but significant increase in heart rate and MAP. Interaction between the vasopressin and ANG II pressor effects was studied, and each proved to be independent.


Sign in / Sign up

Export Citation Format

Share Document