Control of sodium excretion by angiotensin II: intrarenal mechanisms and blood pressure regulation

1986 ◽  
Vol 250 (6) ◽  
pp. R960-R972 ◽  
Author(s):  
J. E. Hall

Angiotensin II (ANG II) is one of the body's most powerful regulators of Na excretion, operating through extrarenal mechanisms, such as stimulation of aldosterone secretion, as well as intrarenal mechanisms. Considerable evidence suggests that the intrarenal actions of ANG II are quantitatively more important than changes in aldosterone secretion in the normal day-to-day regulation of Na balance and arterial pressure. ANG II at physiological concentrations increases proximal tubular reabsorption, but further studies are needed to determine whether ANG II also has an important effect on more distal tubular segments. ANG II also markedly constricts efferent arterioles, tending to increase Na reabsorption by altering peritubular capillary physical forces and also helping to prevent excessive decreases in glomerular filtration rate. ANG II may also decrease Na excretion and increase urine concentrating ability by reducing renal medullary blood flow. Regulation of Na excretion by ANG II is closely linked with arterial pressure control and volume homeostasis through the renal pressure natriuresis mechanism. Under many physiological conditions, such as changes in Na intake, ANG II greatly multiplies the effectiveness of the pressure natriuresis mechanism to prevent fluctuations in body fluid volume and arterial pressure. In circumstances associated with circulatory depression, such as decreased cardiac function, reductions in blood pressure and increased ANG II formation cause Na retention until arterial pressure is restored to normal. However, in pathophysiological conditions in which ANG II is inappropriately elevated, increased arterial pressure (hypertension) is required for the kidney to "escape" the potent antinatriuretic actions of ANG II and to return Na excretion to normal via the pressure natriuresis mechanism.

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Xiao C Li ◽  
Ana P Leite ◽  
Liang Zhang ◽  
Jia L Zhuo

The present study tested the hypothesis that intratubular angiotensin II (Ang II) and AT 1a receptors in the proximal tubules of the kidney plays an important role in basal blood pressure control and in the development of Ang II-induced hypertension. Mutant mice with proximal tubule-specific deletion of AT 1a receptors in the kidney, PT- Agtr1a -/- , were generated to test the hypothesis. Eight groups (n=7-12 per group) of adult male wild-type (WT) and PT- Agtr1a -/- mice were infused with or without Ang II for 2 weeks (1.5 mg/kg, i.p.). Basal systolic, diastolic, and mean arterial pressures were ~13 ± 3 mmHg lower in PT- Agtr1a -/- than WT mice ( P <0.01). Basal glomerular filtration rate (GFR), as measured using transdermal FITC-sinistrin, was significantly higher in PT- Agtr1a -/- mice (WT: 160.4 ± 7.0 μl/min vs. PT- Agtr1a -/- : 186.0 ± 6.0 μl/min, P <0.05). Basal 24 h urinary Na + excretion (U Na V) was significantly higher in PT- Agtr1a -/- than WT mice ( P <0.01). In response to Ang II infusion, both WT and PT- Agtr1a -/- mice developed hypertension, and the magnitude of the pressor response to Ang II was similar in WT (Δ43 ± 3 mmHg, P <0.01) and PT- Agtr1a -/- mice (Δ39 ± 5 mmHg, P <0.01). However, the absolute blood pressure level was still 16 ± 3 mmHg lower in PT- Agtr1a -/- mice ( P <0.01). Ang II significantly decreased GFR to 132.2 ± 7.0 μl/min in WT mice ( P <0.01), and to 129.4 ± 18.6 μl/min in PT- Agtr1a -/- mice ( P <0.01), respectively. In WT mice, U Na V increased from 139.3 ± 22.3 μmol/24 h in the control group to 196.4 ± 29.6 μmol/24 h in the Ang II-infused group ( P <0.01). In PT- Agtr1a -/- mice, U Na V increased from 172.0 ± 10.2 μmol/24 h in the control group to 264.7 ± 35.4 μmol/24 h in the Ang II-infused group ( P <0.01). The pressor response to Ang II was attenuated, while the natriuretic response was augmented by losartan in WT and PT- Agtr1a -/- mice ( P <0.01). Finally, proximal tubule-specific deletion of AT 1a receptors significantly augmented the pressure-natriuresis response and natriuretic responses to acute saline infusion ( P <0.01) or a 2% high salt diet ( P <0.01). We concluded that deletion of AT 1a receptors selectively in the proximal tubules lowers basal blood pressure and attenuates Ang II-induced hypertension by increasing GFR and promoting the natriuretic response in PT- Agtr1a -/- mice.


2019 ◽  
Vol 317 (6) ◽  
pp. F1656-F1668 ◽  
Author(s):  
Aurélie Edwards ◽  
Alicia A. McDonough

Angiotensin II (ANG II) raises blood pressure partly by stimulating tubular Na+ reabsorption. The effects of ANG II on tubular Na+ transporters (i.e., channels, pumps, cotransporters, and exchangers) vary between short-term and long-term exposure. To better understand the physiological impact, we used a computational model of transport along the rat nephron to predict the effects of short- and long-term ANG II-induced transporter activation on Na+ and K+ reabsorption/secretion, and to compare measured and calculated excretion rates. Three days of ANG II infusion at 200 ng·kg−1·min−1 is nonpressor, yet stimulates transporter accumulation. The increase in abundance of Na+/H+ exchanger 3 (NHE3) or activated Na+-K+-2Cl− cotransporter-2 (NKCC2-P) predicted significant reductions in urinary Na+ excretion, yet there was no observed change in urine Na+. The lack of antinatriuresis, despite Na+ transporter accumulation, was supported by Li+ and creatinine clearance measurements, leading to the conclusion that 3-day nonpressor ANG II increases transporter abundance without proportional activation. Fourteen days of ANG II infusion at 400 ng·kg−1·min−1 raises blood pressure and increases Na+ transporter abundance along the distal nephron; proximal tubule and medullary loop transporters are decreased and urine Na+ and volume output are increased, evidence for pressure natriuresis. Simulations indicate that decreases in NHE3 and NKCC2-P contribute significantly to reducing Na+ reabsorption along the nephron and to pressure natriuresis. Our results also suggest that differential regulation of medullary (decrease) and cortical (increase) NKCC2-P is important to preserve K+ while minimizing Na+ retention during ANG II infusion. Lastly, our model indicates that accumulation of active Na+-Cl− cotransporter counteracts epithelial Na+ channel-induced urinary K+ loss.


1995 ◽  
Vol 268 (6) ◽  
pp. H2302-H2310 ◽  
Author(s):  
G. Weichert ◽  
C. A. Courneya

We examined the response to hemorrhage in conscious normotensive and hypertensive rabbits under control conditions and during efferent blockade of 1) the hormones vasopressin (AVP) and angiotensin II (ANG II), 2) the autonomic nervous system, and 3) autonomic and hormonal inputs. We recorded mean arterial pressure, heart rate, and hindlimb conductance. The response to hemorrhage was unchanged with hormonal blockade alone. Blockade of the autonomic nervous system caused a faster rate of blood pressure decline, but the rate of decrease in hindlimb conductance was maintained at control levels. Blocking the autonomic nervous system and the hormones resulted in rapid blood pressure decline and an increase in hindlimb conductance. Although the three types of efferent blockade had a similar pattern of effects in normotensive and hypertensive rabbits, hypertensive rabbits exhibited less cardiovascular support during hemorrhage than normotensive rabbits. During hemorrhage, hypertensive rabbits had an attenuation of hindlimb vasoconstriction, a reduction in the heart rate-mean arterial pressure relationship, and reduced ability to maintain blood pressure compared with normotensive rabbits.


1993 ◽  
Vol 264 (1) ◽  
pp. R211-R217 ◽  
Author(s):  
R. L. Thunhorst ◽  
A. K. Johnson

These experiments examined the dipsogenic responses of rats to intracerebroventricularly administered angiotensin II (ANG II) under normotensive and hypotensive conditions. Intravenous infusion of the vasodilator drug minoxidil (25 micrograms.kg-1.min-1), combined with the angiotensin converting enzyme inhibitor captopril (0.33 mg/min), both reduced blood pressure and prevented endogenous ANG II formation. Central infusions with ANG II (4 or 16 ng/h) began 60 min later, and the intravenous and intracerebroventricular infusions ran concurrently for another 90 min. Mean arterial pressure (MAP), water intake, urine volume (UV) and electrolyte excretion were measured throughout. Water intakes to both doses of intracerebroventricular ANG II were increased, and UV and electrolyte excretion were reduced during hypotensive conditions compared with normotensive conditions. Thus the increased water intakes occurred despite increased fluid retention. It is concluded that arterial hypotension enhances the dipsogenic effects of centrally administered ANG II, possibly through baroreceptor-mediated mechanisms.


2019 ◽  
Vol 133 (23) ◽  
pp. 2401-2413 ◽  
Author(s):  
Gwo-Ching Sun ◽  
Tzyy-Yue Wong ◽  
Hsin-Hung Chen ◽  
Chiu-Yi Ho ◽  
Tung-Chen Yeh ◽  
...  

Abstract G protein-coupled receptors (GPCRs) are important drug targets. Blocking angiotensin II (Ang II) type 1 receptor signaling alleviates hypertension and improves outcomes in patients with heart failure. Changes in structure and trafficking of GPCR, and desensitization of GPCR signaling induce pathophysiological processes. We investigated whether Ang II, via induction of AT1R and μ-opioid receptor (μOR) dimerization in the nucleus tractus solitarius (NTS), leads to progressive hypertension. Ang II signaling increased μOR and adrenergic receptor α2A (α2A-AR) heterodimer levels and decreased expression of extracellular signal-regulated kinases 1/2T202/Y204, ribosomal protein S6 kinaseT359/S363, and nNOSS1416 phosphorylation. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) expression was abolished in the NTS of adult spontaneously hypertensive rats (SHRs). Endomorphin-2 was overexpressed in NTS of adult SHRs compared with that in 6-week-old Wistar-Kyoto rats (WKY). Administration of μOR agonist into the NTS of WKY increased blood pressure (BP), decreased nitric oxide (NO) production, and decreased DDAH1 activity. μOR agonist significantly reduced the activity of DDAH1 and decreased neuronal NO synthase (nNOS) phosphorylation. The AT1R II inhibitor, losartan, significantly decreased BP and abolished AT1R-induced formation of AT1R and μOR, and α2A-AR and μOR, heterodimers. Losartan also significantly increased the levels of nNOSS1416 phosphorylation and DDAH1 expression. These results show that Ang II may induce expression of endomorphin-2 and abolished DDAH1 activity by enhancing the formation of AT1R and μOR heterodimers in the NTS, leading to progressive hypertension.


1983 ◽  
Vol 244 (2) ◽  
pp. R257-R263 ◽  
Author(s):  
C. Sumners ◽  
M. I. Phillips

Centrally injected angiotensin II (ANG II) produces a pressor response. The effect of ANG II injected intracerebroventricularly on catecholamine utilization in specific rat brain regions was examined. A pressor dose of ANG II stimulated an increase in norepinephrine (NE) utilization in the locus coeruleus, raphe magnus and AI regions of the brain stem, and in the hypothalamus. These increases in NE utilization were selective, and dopamine utilization was not altered in the same regions. Also, the changes in NE utilization were direct and not due to the rise in blood pressure caused by ANG II, since a similar pressor effect caused by intravenously injected hypertonic saline did not alter NE utilization in any of the above regions. Areas such as the subfornical organ and organum vasculosum of the lamina terminalis that contain both catecholamines and ANG II receptors did not show a substantial change in catecholamine utilization after intracerebroventricularly injected ANG II. This study demonstrates that specific brain NE rich regions are activated by intracerebroventricular injection of ANG II. Some of these regions correlate with known blood pressure control centers and the data points to brain catecholaminergic regions which are involved in the central ANG II pressor response.


2003 ◽  
Vol 284 (3) ◽  
pp. H1003-H1007 ◽  
Author(s):  
Baojian Xue ◽  
Hope Gole ◽  
Jaya Pamidimukkala ◽  
Meredith Hay

This study reports the effects of angiotensin II (ANG II), arginine vasopression (AVP), phenylephrine (PE), and sodium nitroprusside (SNP) on baroreflex control of heart rate in the presence and absence of the area postrema (AP) in conscious mice. In intact, sham-lesioned mice, baroreflex-induced decreases in heart rate due to increases in arterial pressure with intravenous infusions of ANG II were significantly less than those observed with similar increases in arterial pressure with PE (slope: −3.0 ± 0.9 vs. −8.1 ± 1.5 beats · min−1 · mmHg−1). Baroreflex-induced decreases in heart rate due to increases in arterial pressure with intravenous infusions of AVP were the same as those observed with PE in sham animals (slope: −5.8 ± 0.7 vs. −8.1 ± 1.5 beats · min−1 · mmHg−1). After the AP was lesioned, the slope of baroreflex inhibition of heart rate was the same whether pressure was increased with ANG II, AVP, or PE. The slope of the baroreflex-induced increases in heart rate due to decreases in arterial blood pressure with SNP were the same in sham- and AP-lesioned animals. These results indicate that, similar to other species, in mice the ability of ANG II to acutely reset baroreflex control of heart rate is dependent on an intact AP.


1974 ◽  
Vol 48 (s2) ◽  
pp. 49s-52s ◽  
Author(s):  
E. Haber ◽  
J. Sancho ◽  
R. Re ◽  
J. Burton ◽  
A. C. Barger

1. To examine the role of angiotensin II in the maintenance of blood pressure and control of aldosterone secretion, eight normal human subjects were studied on a tilt table in sodium-replete and sodium-depleted states, before and after the administration of an angiotensin converting-enzyme inhibitor (CEI). 2. Administration of CEI was followed by a marked fall in blood pressure on tilting in sodium-depleted, but not in sodium-replete, subjects. CEI administration also resulted in a rise in plasma renin activity in the supine position, in the absence of haemodynamic change. The rise in plasma aldosterone observed both in response to tilting and sodium depletion did not occur after CEI, even though plasma renin activities were higher. 3. These results indicate that: (a) angiotensin II is essential for blood pressure control in the sodium-depleted individual; (b) angiotensin II exerts direct feedback control on renin secretion; (c) angiotensin II is the primary stimulus to aldosterone secretion in response to both sodium depletion and posture.


Endocrinology ◽  
2011 ◽  
Vol 152 (4) ◽  
pp. 1582-1588 ◽  
Author(s):  
Junichi Yatabe ◽  
Minoru Yoneda ◽  
Midori S. Yatabe ◽  
Tsuyoshi Watanabe ◽  
Robin A. Felder ◽  
...  

Abstract Angiotensin II (Ang II) and Ang III stimulate aldosterone secretion by adrenal glomerulosa, but the angiotensin receptor subtypes involved and the effects of Ang IV and Ang (1–7) are not clear. In vitro, different angiotensins were added to rat adrenal glomerulosa, and aldosterone concentration in the medium was measured. Ang II-induced aldosterone release was blocked (30.3 ± 7.1%) by an Ang II type 2 receptor (AT2R) antagonist, PD123319. Candesartan, an Ang II type 1 receptor (AT1R) antagonist, also blocked Ang II-induced aldosterone release (42.9 ± 4.8%). Coadministration of candesartan and PD123319 almost abolished the Ang II-induced aldosterone release. A selective AT2R agonist, CGP42112, was used to confirm the effects of AT2R. CGP42112 increased aldosterone secretion, which was almost completely inhibited by PD123319. In addition to Ang II, Ang III also induced aldosterone release, which was not blocked by candesartan. However, PD123319 blocked 22.4 ± 10.5% of the Ang III-induced aldosterone secretion. Ang IV and Ang (1–7) did not induce adrenal aldosterone secretion. In vivo, both Ang II and Ang III infusion increased plasma aldosterone concentration, but only Ang II elevated blood pressure. Ang IV and Ang (1–7) infusion did not affect blood pressure or aldosterone concentration. In conclusion, this report showed for the first time that AT2R partially mediates Ang III-induced aldosterone release, but not AT1R. Also, over 60% of Ang III-induced aldosterone release may be independent of both AT1R and AT2R. Ang III and AT2R signaling may have a role in the pathophysiology of aldosterone breakthrough.


1987 ◽  
Vol 252 (1) ◽  
pp. R73-R77
Author(s):  
B. A. Breuhaus ◽  
J. E. Chimoskey

Conscious adult female sheep chronically prepared with nonocclusive indwelling vascular and cerebroventricular catheters were used to determine whether centrally administered prostaglandin E2 (PGE2) increases blood pressure by activation of the brain renin angiotensin system or whether centrally administered angiotensin II (ANG II) increases blood pressure by stimulating prostaglandin synthesis in the brain. Intracerebroventricular (ivt) ANG II, 50 ng X kg-1 X min-1, increased arterial pressure 23 mmHg (P less than 0.01) 30 min after the start of infusion. Infusion of the ANG II antagonist [Sar1-Thr8]ANG II (sarthran), 1,000 ng X kg-1 X min-1 ivt, had no effect on arterial pressure when given by itself but reduced the ivt ANG II-induced pressor response to 5 mmHg (P less than 0.05) when the two peptides were infused at the same time. Intracerebroventricular infusion of sarthran did not alter the pressor responses to intracarotid (ic) PGE2 or to ivt PGE2. Blood pressure increased 21 mmHg (P less than 0.01) 30 min after the start of PGE2 infusion when PGE2 was given ic by itself, compared with 17 mmHg (P less than 0.01) when PGE2 was given ic at the same time as sarthran was given ivt. Blood pressure increased 14 mmHg (P less than 0.01) 30 min after the start of PGE2 infusion when PGE2 was given ivt by itself, compared with 16 mmHg (P less than 0.01) when PGE2 was given ivt at the same time as sarthran was given ivt. Pretreatment with the cyclooxygenase inhibitors indomethacin, 4 mg/kg sc, or flunixin meglumine, 3 mg/kg iv, did not alter the ivt ANG II-induced pressor response.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document