scholarly journals Trafficking of neuronal calcium channels

2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Norbert Weiss ◽  
Gerald W. Zamponi

Neuronal voltage-gated calcium channels (VGCCs) serve complex yet essential physiological functions via their pivotal role in translating electrical signals into intracellular calcium elevations and associated downstream signalling pathways. There are a number of regulatory mechanisms to ensure a dynamic control of the number of channels embedded in the plasma membrane, whereas alteration of the surface expression of VGCCs has been linked to various disease conditions. Here, we provide an overview of the mechanisms that control the trafficking of VGCCs to and from the plasma membrane, and discuss their implication in pathophysiological conditions and their potential as therapeutic targets.

2003 ◽  
Vol 90 (4) ◽  
pp. 2581-2591 ◽  
Author(s):  
F. Aura Ene ◽  
Paul H. M. Kullmann ◽  
Deda C. Gillespie ◽  
Karl Kandler

The lateral superior olive (LSO) is a binaural auditory brain stem nucleus that plays a central role in sound localization. Survival and maturation of developing LSO neurons critically depend on intracellular calcium signaling. Here we investigated the mechanisms by which glutamatergic afferents from the cochlear nucleus increase intracellular calcium concentration in LSO neurons. Using fura-2 calcium imaging in slices prepared from neonatal mice, we found that cochlear nucleus afferents can activate all major classes of ionotropic and metabotropic glutamate receptors, each of which contributes to an increase in intracellular calcium. The specific activation of different glutamate receptor classes was dependent on response amplitudes and afferent stimulus patterns. Low-amplitude responses elicited by single stimuli were entirely mediated by calcium-impermeable AMPA/kainate receptors that activated voltage-gated calcium channels. Larger-amplitude responses elicited by either single stimuli or stimulus trains resulted in additional calcium influx through N-methyl-d-aspartate receptors. Finally, high-frequency stimulation also recruited group I and group II metabotropic glutamate receptors, both of which mobilized intracellular calcium. This calcium release in turn activated a strong influx of extracellular calcium through a membrane calcium channel that is distinct from voltage-gated calcium channels. Together, these results indicate that before hearing onset, distinct patterns of afferent activity generate qualitatively distinct types of calcium responses, which likely serve in guiding different aspects of LSO development.


2009 ◽  
Vol 102 (3) ◽  
pp. 1801-1810 ◽  
Author(s):  
Kuihuan Jian ◽  
Rola Barhoumi ◽  
Michael L. Ko ◽  
Gladys Y.-P. Ko

The inhibitory effects of somatostatin have been well documented for many physiological processes. The action of somatostatin is through G-protein-coupled receptor-mediated second-messenger signaling, which in turn affects other downstream targets including ion channels. In the retina, somatostatin is released from a specific class of amacrine cells. Here we report that there was a circadian phase-dependent effect of somatostatin-14 (SS14) on the L-type voltage-gated calcium channels (L-VGCCs) in cultured chicken cone photoreceptors, and our study reveals that this process is dependent on intracellular calcium stores. Application of 500 nM SS14 for 2 h caused a decrease in L-VGCC currents only during the subjective night but not the subjective day. We then explored the cellular mechanisms underlying the circadian phase-dependent effect of SS14. The inhibitory effect of SS14 on L-VGCCs was mediated through the pertussis-toxin-sensitive G-protein-dependent somatostatin receptor 2 (sst2). Activation of sst2 by SS14 further activated downstream signaling involving phospholipase C and intracellular calcium stores. Mobilization of intracellular Ca2+ was required for somatostatin induced inhibition of photoreceptor L-VGCCs, suggesting that somatostatin plays an important role in the modulation of photoreceptor physiology.


Neuron ◽  
1991 ◽  
Vol 6 (4) ◽  
pp. 557-563 ◽  
Author(s):  
Richard H. Kramer ◽  
Leonard K. Kaczmarek ◽  
Edwin S. Levitan

2016 ◽  
Vol 9 (435) ◽  
pp. ra67-ra67 ◽  
Author(s):  
D.-I. Kim ◽  
H.-J. Kweon ◽  
Y. Park ◽  
D.-J. Jang ◽  
B.-C. Suh

1991 ◽  
Vol 71 (3) ◽  
pp. 1062-1069 ◽  
Author(s):  
M. Shirahata ◽  
R. S. Fitzgerald

The hypothesis that the entry of extracellular calcium ions into some compartment, quite possibly the type I cells, through voltage-gated calcium channels (VGCC) is essential for hypoxic chemotransduction in the cat carotid body was tested using an in situ perfusion technique. The neural output of the carotid body of anesthetized, paralyzed, and artificially ventilated cats in response to perfusions with Krebs-Ringer bicarbonate solution (KRB), calcium-free KRB, KRB containing calcium channel blockers, or KRB containing BAY K 8644 was recorded. Selective perfusion of the carotid body with hypoxic calcium-free KRB significantly decreased carotid chemoreceptor activity, suggesting that extracellular calcium is essential for hypoxic chemotransduction. Selective perfusion of the carotid body with hypoxic KRB containing verapamil (10–100 microM), diltiazem (10–100 microM), or nifedipine (10–100 microM) dose dependently attenuated the increase in chemoreceptor activity produced by hypoxia, suggesting that VGCC need to be activated for hypoxic chemotransduction. The carotid body response to hyperoxic KRB containing the calcium channel agonist BAY K 8644 (10 microM) was 267 +/- 87% of hyperoxic control KRB, suggesting that an enhanced influx of calcium ions through VGCC stimulates carotid chemoreceptor activity. Selective perfusion of the carotid body with severely hypoxic KRB containing BAY K 8644 did not increase chemoreceptor activity above that produced by severe hypoxia alone. This suggests that severe hypoxia increases intracellular calcium in some compartment of the carotid body to achieve stimulatory maximum response and that further increase in intracellular calcium does not produce further elevation of neural activity.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document