The Haskins Optically Corrected Ultrasound System (HOCUS)

2005 ◽  
Vol 48 (3) ◽  
pp. 543-553 ◽  
Author(s):  
D. H. Whalen ◽  
Khalil Iskarous ◽  
Mark K. Tiede ◽  
David J. Ostry ◽  
Heike Lehnert-LeHouillier ◽  
...  

The tongue is critical in the production of speech, yet its nature has made it difficult to measure. Not only does its ability to attain complex shapes make it difficult to track, it is also largely hidden from view during speech. The present article describes a new combination of optical tracking and ultrasound imaging that allows for a noninvasive, real-time view of most of the tongue surface during running speech. The optical system (Optotrak) tracks the location of external structures in 3-dimensional space using infrared emitting diodes (IREDs). By tracking 3 or more IREDs on the head and a similar number on an ultrasound transceiver, the transduced image of the tongue can be corrected for the motion of both the head and the transceiver and thus be represented relative to the hard structures of the vocal tract. If structural magnetic resonance images of the speaker are available, they may allow the estimation of the location of the rear pharyngeal wall as well. This new technique is contrasted with other currently available options for imaging the tongue. It promises to provide high-quality, relatively low-cost imaging of most of the tongue surface during fairly unconstrained speech.

2008 ◽  
Vol 5 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Kai Haake ◽  
Haseborg ter

In this paper a new type of modular robot will be presented that is able to move a sensor with minimal inferences along predefined trajectories within a 3 dimensional space. The theory behind the mechanical method of operation will be explained in detail. Due to its versatility the field of application is quite vast. Different examples of field measurement are carried out. The setup is described in detail and the results are presented.


2020 ◽  
Vol 12 (2) ◽  
pp. 151-161
Author(s):  
M. RAJA ◽  
Ugur GUVEN ◽  
Kartikay SINGH

Navigation and guidance systems for most automobile as well as aerospace applications require a coupled chip setup known as Inertial Measurement Units (IMU) which, depending on the degree of freedoms, contains a Gyroscope (for maintaining orientation and angular velocity), Accelerometers (to determine acceleration in the respective direction) and a Magnetometer (to determine the respective magnetic fields). In the three-dimensional space, any required rotation analysis is limited to the coordinate systems and all subtended angles in either direction must be defined by a fixed axis to effectively estimate the stability and to define all the attitude estimates needed to compile different rotations and orientations. The Quaternions are mathematical notations used for defining rotations and orientation in three-dimensional space. The simplest terms Quaternions are impossible to visualize in a three-dimensional space; the first three terms will be identical to the coordinate system, but through Quaternions another vector quantity is added into the equations, which may in fact underline how we can account for all rotational quantities. The fundamental analysis of these components different applications for various fields is proposed.


2016 ◽  
Vol 59 (3) ◽  
pp. 468-479 ◽  
Author(s):  
Fangxu Xing ◽  
Jonghye Woo ◽  
Junghoon Lee ◽  
Emi Z. Murano ◽  
Maureen Stone ◽  
...  

Purpose Measuring tongue deformation and internal muscle motion during speech has been a challenging task because the tongue deforms in 3 dimensions, contains interdigitated muscles, and is largely hidden within the vocal tract. In this article, a new method is proposed to analyze tagged and cine magnetic resonance images of the tongue during speech in order to estimate 3-dimensional tissue displacement and deformation over time. Method The method involves computing 2-dimensional motion components using a standard tag-processing method called harmonic phase, constructing superresolution tongue volumes using cine magnetic resonance images, segmenting the tongue region using a random-walker algorithm, and estimating 3-dimensional tongue motion using an incompressible deformation estimation algorithm. Results Evaluation of the method is presented with a control group and a group of people who had received a glossectomy carrying out a speech task. A 2-step principal-components analysis is then used to reveal the unique motion patterns of the subjects. Azimuth motion angles and motion on the mirrored hemi-tongues are analyzed. Conclusion Tests of the method with a various collection of subjects show its capability of capturing patient motion patterns and indicate its potential value in future speech studies.


2009 ◽  
Author(s):  
Xiu Jianjuan ◽  
Li Yuli ◽  
He You ◽  
Wang Guohong

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tomoya Miura ◽  
Shun Maeta

Abstract We show that any triharmonic Riemannian submersion from a 3-dimensional space form into a surface is harmonic. This is an affirmative partial answer to the submersion version of the generalized Chen conjecture. Moreover, a non-existence theorem for f -biharmonic Riemannian submersions is also presented.


Sign in / Sign up

Export Citation Format

Share Document