scholarly journals Resting-State Functional Magnetic Resonance Imaging Connectivity Between Semantic and Phonological Regions of Interest May Inform Language Targets in Aphasia

2020 ◽  
Vol 63 (9) ◽  
pp. 3051-3067
Author(s):  
Amy E. Ramage ◽  
Semra Aytur ◽  
Kirrie J. Ballard

Purpose Brain imaging has provided puzzle pieces in the understanding of language. In neurologically healthy populations, the structure of certain brain regions is associated with particular language functions (e.g., semantics, phonology). In studies on focal brain damage, certain brain regions or connections are considered sufficient or necessary for a given language function. However, few of these account for the effects of lesioned tissue on the “functional” dynamics of the brain for language processing. Here, functional connectivity (FC) among semantic–phonological regions of interest (ROIs) is assessed to fill a gap in our understanding about the neural substrates of impaired language and whether connectivity strength can predict language performance on a clinical tool in individuals with aphasia. Method Clinical assessment of language, using the Western Aphasia Battery–Revised, and resting-state functional magnetic resonance imaging data were obtained for 30 individuals with chronic aphasia secondary to left-hemisphere stroke and 18 age-matched healthy controls. FC between bilateral ROIs was contrasted by group and used to predict Western Aphasia Battery–Revised scores. Results Network coherence was observed in healthy controls and participants with stroke. The left–right premotor cortex connection was stronger in healthy controls, as reported by New et al. (2015) in the same data set. FC of (a) connections between temporal regions, in the left hemisphere and bilaterally, predicted lexical–semantic processing for auditory comprehension and (b) ipsilateral connections between temporal and frontal regions in both hemispheres predicted access to semantic–phonological representations and processing for verbal production. Conclusions Network connectivity of brain regions associated with semantic–phonological processing is predictive of language performance in poststroke aphasia. The most predictive connections involved right-hemisphere ROIs—particularly those for which structural adaptions are known to associate with recovered word retrieval performance. Predictions may be made, based on these findings, about which connections have potential as targets for neuroplastic functional changes with intervention in aphasia. Supplemental Material https://doi.org/10.23641/asha.12735785

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Cui-Ping Xu ◽  
Shou-Wen Zhang ◽  
Tie Fang ◽  
Ma Manxiu ◽  
Qian Chencan ◽  
...  

Functional connectivity has been correlated with a patient’s level of consciousness and has been found to be altered in several neuropsychiatric disorders. Absence epilepsy patients, who experience a loss of consciousness, are assumed to suffer from alterations in thalamocortical networks; however, previous studies have not explored the changes at a functional module level. We used resting-state functional magnetic resonance imaging to examine the alteration in functional connectivity that occurs in absence epilepsy patients. By parcellating the brain into 90 brain regions/nodes, we uncovered an altered functional connectivity within and between functional modules. Some brain regions had a greater number of altered connections and therefore behaved as key nodes in the changed network pattern; these regions included the superior frontal gyrus, the amygdala, and the putamen. In particular, the superior frontal gyrus demonstrated both an increased value of connections with other nodes of the frontal default mode network and a decreased value of connections with the limbic system. This divergence is positively correlated with epilepsy duration. These findings provide a new perspective and shed light on how functional connectivity and the balance of within/between module connections may contribute to both the state of consciousness and the development of absence epilepsy.


2021 ◽  
Author(s):  
Fan Yao ◽  
Qiu-Yu Li ◽  
Hui-Ye Shu ◽  
Rong-Bin Liang ◽  
Yi-Cong Pan ◽  
...  

Abstract Purpose: Previous studies on monocular blindness (MB) have mainly focused on concept and impact. The present study measured spontaneous brain activity in MB patients using the percentage of amplitude fluctuation (PerAF) method.Methods: Twenty-nine patients with MB (21 male and 8 female) and 29 age-, gender-, and weight-matched healthy controls (HCs) were recruited. All participants underwent resting state functional magnetic resonance imaging (rs-fMRI). The PerAF method was used to analyze the data and evaluate the spontaneous regional brain activity. The ability of PerAF values to distinguish patients with MB from HCs was analyzed using receiver operating characteristic (ROC) curves, and correlation analysis was used to assess the relationship between PerAF values of brain regions and the Hospital Anxiety and Depression Scale (HADS) scores.Results: PerAF values in Occipital_Mid_L/ Occipital_Mid_R/ Cingulum_Mid_L were significantly lower in patients with MB than in controls. Conversely, values in the Frontal_Sup_Orb_L / Frontal_Inf_Orb_L/ Temporal_Inf_L/ Frontal_Inf_Oper_L were significantly higher in MB patients than in HCs. And the AUC of ROC curves were follows: 0.904, (p<0.0001; 95% CI: 0.830-0.978) for Frontal_Sup_Orb_L/ Frontal_Inf_Orb_L; Temporal_Inf_L 0.883, (p<0.0001; 95% CI: 0.794-0.972); Frontal_Inf_Oper_L 0.964, (p<0.0001; 95% CI: 0.924-1.000), and 0.893 (p<0.0001; 95% CI: 0.812-0.973) for Occipital_Mid_L; Occipital_Mid_R 0.887, (p<0.0001; 95% CI: 0.802-0.971); Cingulum_Mid_L 0.855, (p<0.0001; 95% CI: 0.750-0.960).Conclusion: The results of our study show abnormal activity in some brain regions in patients with MB, indicating that these patients may be at risk of disorder related to these brain regions. These results may reflect the neuropathological mechanisms of MB and facilitate early MB diagnoses.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Laura Zapparoli ◽  
Silvia Seghezzi ◽  
Francantonio Devoto ◽  
Marika Mariano ◽  
Giuseppe Banfi ◽  
...  

Abstract Current neurocognitive models of motor control postulate that accurate action monitoring is crucial for a normal experience of agency—the ability to attribute the authorship of our actions and their consequences to ourselves. Recent studies demonstrated that action monitoring is impaired in Gilles de la Tourette syndrome, a movement disorder characterized by motor and vocal tics. It follows that Tourette syndrome patients may suffer from a perturbed sense of agency, the hypothesis tested in this study. To this end, we recruited 25 Tourette syndrome patients and 25 matched healthy controls in a case-control behavioural and functional magnetic resonance imaging study. As an implicit index of the sense of agency, we measured the intentional binding phenomenon, i.e., the perceived temporal compression between voluntary movements and their external consequences. We found evidence of an impaired sense of agency in Tourette syndrome patients who, as a group, did not show a significant intentional binding. The more reduced was the individual intentional binding, the more severe were the motor symptoms. Specific differences between the two groups were also observed in terms of brain activation patterns. In the healthy controls group, the magnitude of the intentional binding was associated with the activity of a premotor–parietal–cerebellar network. This relationship was not present in the Tourette syndrome group, suggesting an altered activation of the agency brain network for self-generated acts. We conclude that the less accurate action monitoring described in Tourette syndrome also involves the assessment of the consequences of actions in the outside world. We discuss that this may lead to difficulties in distinguishing external consequences produced by their own actions from the ones caused by others in Tourette syndrome patients.


Sign in / Sign up

Export Citation Format

Share Document