scholarly journals Noise Exposure and Use of Hearing Protection Among Adolescents in Rural Areas

2021 ◽  
pp. 1-13
Author(s):  
Leigh Ann Reel ◽  
Candace Bourland Hicks ◽  
Courtney Arnold

Purpose: Noise-induced hearing loss (NIHL) has been found in rural children, potentially due to occupational and recreational noise exposure without consistent use of hearing protection devices (HPDs). However, questions remain regarding the specifics of rural adolescents' noise exposure and use of hearing protection around different types of noise. As such, the purpose of the current study was to provide preliminary results on rural adolescents' noise exposure and use of hearing protection for gunfire, heavy machinery, power tools, all-terrain vehicles (ATVs), and music. Method: A questionnaire was administered to 197 students (seventh to 12th grade) from rural schools in West Texas. Questions were related to noise exposure and use of HPDs for specific categories of noise. Testing was performed at the schools, with an investigator recording each student's responses. Results: Approximately 18%–44% of adolescents reported exposure 12 or more times a year to gunfire, heavy machinery, power tools, and ATVs. Only 1%–18% of the adolescents reported never being exposed to such noise sources. Almost half of rural adolescents never used hearing protection around gunfire, and 77%–91% reported never wearing hearing protection when exposed to heavy machinery, power tools, and ATVs. Conclusions: The current study revealed that rural adolescents are exposed to noise sources that could damage their hearing. However, the majority of rural adolescents do not consistently wear hearing protection. Additional research is now needed to extend these findings by assessing rural adolescents' duration of exposure to different noise sources, in addition to investigating prevention of NIHL in this population. Supplemental Material https://doi.org/10.23641/asha.17139335

Author(s):  
David C. Byrne ◽  
Thais C. Morata

Exposure to industrial noise and the resulting effect of occupational hearing loss is a common problem in nearly all industries. This chapter describes industrial noise exposure, its assessment, and hearing disorders that result from overexposure to noise. Beginning with the properties of sound, noise-induced hearing loss and other effects of noise exposure are discussed. The impact of hearing disorders and the influence of other factors on hearing loss are described. Typically, noise-induced hearing loss develops slowly, and usually goes unnoticed until a significant impairment has occurred. Fortunately, occupational hearing loss is nearly always preventable. Therefore, this chapter gives particular attention to recommendations for measures to prevent occupational hearing loss such as engineering noise controls and hearing protection devices.


Author(s):  
Chanbeom Kwak ◽  
Woojae Han

To prevent intensive noise exposure in advance and be safely controlled during such exposure, hearing protection devices (HPDs) have been widely used by workers. The present study evaluates the effectiveness of these HPDs, partitioned into three different outcomes, such as sound attenuation, sound localization, and speech perception. Seven electronic journal databases were used to search for published articles from 2000 to 2021. Based on inclusion criteria, 20 articles were chosen and then analyzed. For a systematic review and meta-analysis, standardized mean differences (SMDs) and effect size were calculated using a random-effect model. The funnel plot and Egger’s regression analysis were conducted to assess the risk of bias. From the overall results of the included 20 articles, we found that the HPD function performed significantly well for their users (SMDs: 0.457, 95% confidence interval (CI): 0.034–0.881, p < 0.05). Specifically, a subgroup analysis showed a meaningful difference in sound attenuation (SMDs: 1.080, 95% CI: 0.167–1.993, p < 0.05) when to wear and not to wear HPDs, but indicated no significance between the groups for sound localization (SMDs: 0.177, 95% CI: 0.540–0.894, p = 0.628) and speech perception (SMDs: 0.366, 95% CI: −0.100–1.086, p = 0.103). The HPDs work well for their originally designated purposes without interfering to find the location of the sound sources and for talking between the workers. Taking into account various factors, such as the characteristics of the users, selection of appropriate types, and fitting methods for wearing in different circumstances, seems to be necessary for a reliable systematic analysis in terms of offering the most useful information to the workers.


CoDAS ◽  
2020 ◽  
Vol 32 (2) ◽  
Author(s):  
Christina Tikka ◽  
Jos Verbeek ◽  
Erik Kateman ◽  
Thais Catalani Morata ◽  
Wouter Dreschler ◽  
...  

ABSTRACT Purpose Assess the effect of non-pharmaceutical interventions at work on noise exposure or occupational hearing loss compared to no or alternative interventions. Research strategies Pubmed, Embase, Web of Science, OSHupdate, Cochrane Central and Cumulative Index to Nursing and Allied Health Literature (CINAHL) were searched. Selection criteria Randomized Controlled Trials (RCT), Controlled Before-After studies (CBA) and Interrupted Time-Series studies (ITS) evaluating engineering controls, administrative controls, personal hearing protection devices, and hearing surveillance were included. Case studies of engineering controls were collected. Data analysis Cochrane methods for systematic reviews, including meta-analysis, were followed. Results 29 studies were included. Stricter legislation can reduce noise levels by 4.5 dB(A) (very low-quality evidence). Engineering controls can immediately reduce noise (107 cases). Eleven RCTs and CBA studies (3725 participants) were evaluated through Hearing Protection Devices (HPDs). Training of earplug insertion reduces noise exposure at short term follow-up (moderate quality evidence). Earmuffs might perform better than earplugs in high noise levels but worse in low noise levels (very low-quality evidence). HPDs might reduce hearing loss at very long-term follow-up (very low-quality evidence). Seventeen studies (84028 participants) evaluated hearing loss prevention programs. Better use of HPDs might reduce hearing loss but other components not (very low-quality evidence). Conclusion Hearing loss prevention and interventions modestly reduce noise exposure and hearing loss. Better quality studies and better implementation of noise control measures and HPDs is needed.


2021 ◽  
Vol 104 (3) ◽  
pp. 349-358

Objective: To investigate hearing protection devices (HPDs) use and its relationship with hearing loss among steel industry workers in Thailand. Materials and Methods: The present cross-sectional study included 93 eligible participants who are working in the designated high-noise-level zones, which is 85 or more A-weighted decibels [dB(A)] for eight hours time-weighted average, of the two factories. Self-report forms were used to obtain HPDs use by industry workers and noise exposure level was measured with Spark® (Model 706) noise dosimeter. Audiometric screening for hearing loss was performed at a regional hospital by the qualified technician. The hearing loss in each ear was defined if the average threshold level was found to have exceeded 25 dB(A) at high frequencies of 4 and 6 kHz. Results: The findings showed that 45.2% of workers used earplug, 16.1% used earmuff, and 38.7% used both, and most workers (55.8%) wear HDPs regularly, for six of seven days per week. Fifty seven percent of workers wear HDPs for more than 60% time of an 8-hour work shift. Most workers (75.2%) have hearing loss. Conclusion: The authors’ result revealed that almost half of workers used hearing protection devices and most workers use HPDs during the 8-hour work time. Abnormal hearing ability were found among workers. The education program such as the hazards of noise on potential auditory loss, a noise education training program and full use of HPDs are encouraged to prevent effect of noise on workers. Keywords: Hearing protection devices, Noise induced hearing loss, Steel industry


2015 ◽  
Vol 39 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Rafał Młyński ◽  
Emil Kozłowski ◽  
Jan Adamczyk

Abstract The impulse noise is agent harmful to health not only in the case of shots from firearms and the explosions of explosive materials. This kind of noise is also present in many workplaces in the industry. The paper presents the results of noise parameters measurements in workplaces where four different die forging hammers were used. The measured values of the C-weighted peak sound pressure level, the A-weighted maximum sound pressure level and A-weighted noise exposure level normalized to an 8 h working day (daily noise exposure level) exceeded the exposure limit values. For example, the highest measured value of the C-weighted peak sound pressure level was 148.9 dB. In this study possibility of the protection of hearing with the use of earplugs or earmuffs was assessed. The measurement method for the measurements of noise parameters under hearing protection devices using an acoustical test fixture instead of testing with the participation of subjects was used. The results of these measurements allows for assessment which of two tested earplugs and two tested earmuffs sufficiently protect hearing of workers in workplaces where forging hammers are used.


2021 ◽  
Author(s):  
Chanbeom Kwak ◽  
Woojae Han

Abstract Background: To prevent intensive noise exposure in advance and be safely controlled during such exposure, hearing protection devices (HPDs) have widely been used for workers. The present study evaluates the effectiveness of these HPDs, partitioned into three different outcomes, such as sound attenuation, sound localization, and speech perception. Methods: For thus systematic review and meta-analysis, standardized mean differences (SMDs) and effect size were calculated using a random-effect model. Seven electronic journal databases were used to search published articles from 2000 to 2020. Based on inclusion criteria, 20 articles were chosen and then analyzed. Results: Overall, the HPD function performed significantly well for their users (SMDs: 0.457, 95% confidence interval [CI]: 0.034-0.881, p< 0.05). Specifically, a subgroup analysis showed a meaningful difference in sound attenuation (SMDs: 1.080, 95% CI: 0.167-1.993, p< 0.05) when to wear and not to wear HPDs, but indicated no significance between the groups for sound localization (SMDs: 0.177, 95% CI: 0.540-0.894, p = 0.628) and speech perception (SMDs: 0.366, 95% CI: -0.100 -1.086, p = 0.103). Conclusions: The HPDs work well for their originally designated purposes without interfering to find the location of the sound sources and for talking between workers. In a further study, various factors, such as characteristics of the users, selection of appropriate types, and fitting methods for wearing in different circumstances should be differenciated in terms of offering the most useful infomation to the workers.


2006 ◽  
Vol 8 (33) ◽  
pp. 147 ◽  
Author(s):  
DM Nondahl ◽  
KJ Cruickshanks ◽  
DS Dalton ◽  
B.E.K Klein ◽  
R Klein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document