Dissimilarity Ratings of English Consonants by Normally-Hearing and Hearing-Impaired Individuals

1979 ◽  
Vol 22 (2) ◽  
pp. 236-246 ◽  
Author(s):  
Jeffrey L. Danhauer ◽  
Ruth M. Lawarre

Perceptual patterns in rating dissimilarities among 24 CVs were investigated for a group of normal-hearing and two groups of hearing-impaired subjects (one group with flat, and one group with sloping, sensorineural losses). Stimuli were presented binaurally at most comfortable loudness level and subjects rated the 576 paired stimuli on a 1–7 equal-appearing interval scale. Ratings were submitted to individual group and combined INDSCAL analyses to describe features used by the subjects in their perception of the speech stimuli. Results revealed features such as sibilant, sonorant, plosive and place. Furthermore, normal and hearing-impaired subjects used similar features, and subjects' weightings of features were relatively independent of their audiometric configurations. Results are compared to those of previous studies.

1984 ◽  
Vol 27 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Daniel Geller ◽  
Robert H. Margolis

Three experiments were conducted to explore the utility of magnitude estimation of loudness for hearing aid selection. In Experiment 1 the loudness discomfort level (LDL), most comfortable loudness (MCL), and magnitude estimations (MEs) of loudness were obtained from normal-hearing subjects. MCLs fell within a range of loudnesses that was relatively low on the loudness function. The LDLs were lower than previously published values. Experiment 2 was performed to identify the source of disparity between our LDL data and previously reported results. The effects of instructions are demonstrated and discussed. In Experiment 3 magnitude estimations of loudness were used to determine the loudness of tonal stimuli selected to represent ⅓ octave band levels of speech. Over the 500–4000 Hz range, the contributions of the various frequency regions to the loudness of speech appears to be nearly constant. Methods are proposed for (a) predicting the frequency-gain response of a hearing aid that restores normal loudness for speech for the hearing-impaired listener and (b) psychophysically evaluating the compression characteristic of a hearing aid.


1989 ◽  
Vol 32 (4) ◽  
pp. 816-828 ◽  
Author(s):  
Robyn M. Cox

This paper reports the results of a series of investigations of comfortable loudness levels with particular reference to their application to hearing aid gain prescriptions. Experiment 1 studied the effects of several stimulus waveforms, bandwidths, and durations on comfortable loudness levels for normal and hearing impaired listeners. Speech band comfort levels were found to be significantly higher than equal-duration noise band or warble tone comfort levels. Comfortable loudness levels were found to be independent of warble tone modulation parameters and of stimulus bandwidth (stimuli did not exceed critical bandwidths). In Experiment 2, reliability of comfortable loudness levels was evaluated in hearing-impaired subjects over two consecutive 1-year periods. Results indicated that comfortable loudness levels were slightly less reliable than thresholds. In addition, the results were consistent with a hypothesis that exposure to amplified sound produces a small increase in comfortable loudness levels. In Experiment 3, data from 67 hearing-impaired subjects were used to develop regression equations for prediction of comfortable loudness levels. Thresholds at the test frequencies were combined with comfortable loudness data at 500 Hz and 4000 Hz. The prediction method was then evaluated using a new group of 25 subjects. Accuracy of predictions of comfort levels was substantially better with the new method than with an older method that relied exclusively on threshold data. Relevance of the outcomes to hearing aid fitting procedures is discussed.


2020 ◽  
Vol 16 (2) ◽  
pp. 140-146
Author(s):  
Gwang Min Kim ◽  
Jae Hee Lee

Purpose: Although hearing-impaired (HI) listeners often have difficulty understanding in noise as their primary complaints, the speech-in-noise intelligibility test is not conducted as a standard audiologic test battery. This study investigated whether the speech audiometry in quiet accurately reflects the sentence-in-noise intelligibility of HI listeners. Methods: Sixty-two HI listeners participated. All the HI listeners had symmetrical high-frequency hearing loss and bilaterally worn hearing aids. Twenty-five normal-hearing (NH) listeners also participated as a control group. The unaided word and sentence recognition scores (WRS and SRS) were obtained in quiet at individually determined most comfortable loudness level. With bilateral hearing aids, the aided WRS and SRS were evaluated at a normal conversational level. The software-based Korean Matrix sentence in noise test was administered at a fixed level (65 dB SPL) of noise while adjusting the sentence level adaptively based on the listener’s response. The signal-to-noise ratio (SNR) required to achieve 50% intelligibility (speech recognition thresholds, SRTs) was obtained. Results: On average, the aided SRT of HI listeners was 0.1 dB SNR, and the mean SRT of NH adults was -8.91 dB SNR. The Matrix sentence-in-noise intelligibility was not sufficiently explained by the unaided WRS or unaided SRS. Conclusion: A traditional measure of the unaided speech-in-quiet recognition cannot accurately predict the aided speech-innoise intelligibility. Clinically, a software-based sentence-in-noise intelligibility test is recommended to directly confirm the actual benefits of hearing aid in noisy situations.


2002 ◽  
Vol 13 (03) ◽  
pp. 154-159 ◽  
Author(s):  
Patrick N. Plyler ◽  
Mark S. Hedrick

The purpose of the present study was to determine whether varying the presentation level of stop consonant stimuli resulted in similar phonetic boundary shifts for listeners with normal and impaired hearing. Sixteen normal-hearing and 16 hearing-impaired listeners categorized synthetic speech stimuli as /b/, /d/, or /g/. The onset frequency of F2 varied from 900 to 2300 Hz (100-Hz steps), and the presentation level varied from 92 to 62 dB SPL (10-dB steps) for each stimulus presentation. Hearing-impaired listeners had significantly more missing boundary values than normal-hearing listeners; however, the correlation between the number of missing boundary values and hearing sensitivity was not significant. Comparison of boundary shift with level demonstrated that hearing-impaired listeners had a smaller boundary shift with increasing level than normal-hearing listeners. The amount of boundary shift was not correlated with audibility. The results of the current study suggest that increasing the presentation level of a signal does not result in performance similar to that of listeners with normal hearing.


2020 ◽  
Vol 63 (4) ◽  
pp. 1299-1311 ◽  
Author(s):  
Timothy Beechey ◽  
Jörg M. Buchholz ◽  
Gitte Keidser

Objectives This study investigates the hypothesis that hearing aid amplification reduces effort within conversation for both hearing aid wearers and their communication partners. Levels of effort, in the form of speech production modifications, required to maintain successful spoken communication in a range of acoustic environments are compared to earlier reported results measured in unaided conversation conditions. Design Fifteen young adult normal-hearing participants and 15 older adult hearing-impaired participants were tested in pairs. Each pair consisted of one young normal-hearing participant and one older hearing-impaired participant. Hearing-impaired participants received directional hearing aid amplification, according to their audiogram, via a master hearing aid with gain provided according to the NAL-NL2 fitting formula. Pairs of participants were required to take part in naturalistic conversations through the use of a referential communication task. Each pair took part in five conversations, each of 5-min duration. During each conversation, participants were exposed to one of five different realistic acoustic environments presented through highly open headphones. The ordering of acoustic environments across experimental blocks was pseudorandomized. Resulting recordings of conversational speech were analyzed to determine the magnitude of speech modifications, in terms of vocal level and spectrum, produced by normal-hearing talkers as a function of both acoustic environment and the degree of high-frequency average hearing impairment of their conversation partner. Results The magnitude of spectral modifications of speech produced by normal-hearing talkers during conversations with aided hearing-impaired interlocutors was smaller than the speech modifications observed during conversations between the same pairs of participants in the absence of hearing aid amplification. Conclusions The provision of hearing aid amplification reduces the effort required to maintain communication in adverse conditions. This reduction in effort provides benefit to hearing-impaired individuals and also to the conversation partners of hearing-impaired individuals. By considering the impact of amplification on both sides of dyadic conversations, this approach contributes to an increased understanding of the likely impact of hearing impairment on everyday communication.


2014 ◽  
Vol 155 (38) ◽  
pp. 1524-1529
Author(s):  
Ádám Bach ◽  
Ferenc Tóth ◽  
Vera Matievics ◽  
József Géza Kiss ◽  
József Jóri ◽  
...  

Introduction: Cortical auditory evoked potentials can provide objective information about the highest level of the auditory system. Aim: The purpose of the authors was to introduce a new tool, the “HEARLab” which can be routinely used in clinical practice for the measurement of the cortical auditory evoked potentials. In addition, they wanted to establish standards of the analyzed parameters in subjects with normal hearing. Method: 25 adults with normal hearing were tested with speech stimuli, and frequency specific examinations were performed utilizing pure tone stimuli. Results: The findings regarding the latency and amplitude analyses of the evoked potentials confirm previously published results of this novel method. Conclusions: The HEARLAb can be a great help when performance of the conventional audiological examinations is complicated. The examination can be performed in uncooperative subjects even in the presence of hearing aids. The test is frequency specific and does not require anesthesia. Orv. Hetil., 2014, 155(38), 1524–1529.


2019 ◽  
Vol 23 ◽  
pp. 233121651988761 ◽  
Author(s):  
Gilles Courtois ◽  
Vincent Grimaldi ◽  
Hervé Lissek ◽  
Philippe Estoppey ◽  
Eleftheria Georganti

The auditory system allows the estimation of the distance to sound-emitting objects using multiple spatial cues. In virtual acoustics over headphones, a prerequisite to render auditory distance impression is sound externalization, which denotes the perception of synthesized stimuli outside of the head. Prior studies have found that listeners with mild-to-moderate hearing loss are able to perceive auditory distance and are sensitive to externalization. However, this ability may be degraded by certain factors, such as non-linear amplification in hearing aids or the use of a remote wireless microphone. In this study, 10 normal-hearing and 20 moderate-to-profound hearing-impaired listeners were instructed to estimate the distance of stimuli processed with different methods yielding various perceived auditory distances in the vicinity of the listeners. Two different configurations of non-linear amplification were implemented, and a novel feature aiming to restore a sense of distance in wireless microphone systems was tested. The results showed that the hearing-impaired listeners, even those with a profound hearing loss, were able to discriminate nearby and far sounds that were equalized in level. Their perception of auditory distance was however more contracted than in normal-hearing listeners. Non-linear amplification was found to distort the original spatial cues, but no adverse effect on the ratings of auditory distance was evident. Finally, it was shown that the novel feature was successful in allowing the hearing-impaired participants to perceive externalized sounds with wireless microphone systems.


Sign in / Sign up

Export Citation Format

Share Document