Multiple Memory Systems and Their Support of Language

Author(s):  
Jake Kurczek ◽  
Natalie Vanderveen ◽  
Melissa C. Duff

There is a long history of research linking the various forms of memory to different aspects of language. Clinically, we see this memory-language connection in the prevalence of language and communication deficits in populations that have concomitant impairments in memory and learning. In this article, we provide an overview of how the demands of language use and processing are supported by multiple memory systems in the brain, including working memory, declarative memory and nondeclarative memory, and how disruptions in different forms of memory may affect language. While not an exhaustive review of the literature, special attention is paid to populations who speech-language pathologists (SLPs) routinely serve. The goal of this review is to provide a resource for clinicians working with clients with disorders in memory and learning in helping to understand and anticipate the range of disruptions in language and communication that can arise as a consequence of memory impairment. We also hope this is a catalyst for more research on the contribution of multiple memory systems to language and communication.

Author(s):  
Richard J. Beninger

The Introduction provides a brief overview of the book. The central theme is dopamine-mediated reward-related incentive learning—the acquisition by neutral stimuli of an increased ability to elicit approach and other responses. The brain has multiple memory systems defined as “declarative” and “non-declarative”; incentive learning produces one form of non-declarative memory. Once incentive learning is established it is gradually lost when the rewarding stimulus is no longer available or when dopamine function is reduced. Decreases in dopaminergic neurotransmission may produce inverse incentive learning—the loss by stimuli of their ability to elicit approach and other responses. Dopamine-related diseases including schizophrenia, Parkinson’s, attention deficit hyperactivity disorder, and drug abuse involve altered incentive learning. Incentive and inverse incentive learning may occur by the actions of dopamine, adenosine, and endocannabinoids at dendritic spines of striatal medium spiny neurons that have had recent glutamate input. Activity in dopaminergic neurons in humans appears to affect mental experience.


2019 ◽  
pp. 12-31
Author(s):  
Alan J. McComas

This chapter outlines the history of research meetings dealing with consciousness, beginning with that hosted by Herbert Jasper in the Laurentian mountains of Quebec in 1953. It starts, however, with a brief discussion on ancient scientific approaches to medicine, which was jump-started by the Greek physician, Hippocrates. Afterward, the chapter skips forward two millennia to major figures who made breakthroughs in the field of brain science. It also touches on a central debate that reached its climax a little later, as to which part of the brain was responsible for consciousness. The chapter considers whether it was the cerebral cortex, as had been the prevailing assumption, or if it was the brain stem.


1987 ◽  
Vol 64 (2) ◽  
pp. 571-577 ◽  
Author(s):  
Laura Cushman ◽  
Bruce Caplan

In this report, we describe the “fractionation of memory systems” in a 62-yr.-old woman following a left anterior stroke. Despite the presence of a significant, persistent declarative memory (verbal learning) deficit, this patient exhibited relatively intact procedural learning. The latter was manifested over a 4-day period by improved performance on a maze task executed under “mirror-tracing” conditions. By the final set of trials, the patient's performance approximated that of a normal control subject with respect to speed, although not errors. The selective preservation of particular learning abilities in brain-damaged patients has implications for rehabilitative interventions.


2018 ◽  
Vol 6 ◽  
Author(s):  
Natalie V. Covington ◽  
Melissa C. Duff

Author(s):  
Richard J. Beninger

Life’s Rewards: Linking Dopamine, Incentive Learning, Schizophrenia, and the Mind explains how increased brain dopamine produces reward-related incentive learning, the acquisition by neutral stimuli of increased ability to elicit approach and other responses. Dopamine decreases may produce inverse incentive learning, the loss by stimuli of the ability to elicit approach and other responses. Incentive learning is gradually lost when dopamine receptors are blocked. The brain has multiple memory systems defined as “declarative” and “non-declarative;” incentive learning produces one form of non-declarative memory. People with schizophrenia have hyperdopaminergia, possibly producing excessive incentive learning. Delusions may rely on declarative memory to interpret the world as it appears with excessive incentive learning. Parkinson’s disease, associated with dopamine loss, may involve a loss of incentive learning and increased inverse incentive learning. Drugs of abuse activate dopaminergic neurotransmission, leading to incentive learning about drug-associated stimuli. After withdrawal symptoms have been alleviated by detoxification treatment, drug-associated conditioned incentive stimuli will retain their ability to elicit responses until they are repeatedly experienced in the absence of primary drug rewards. Incentive learning may involve the action of dopamine at dendritic spines of striatal medium spiny neurons that have recently had glutamatergic input from assemblies of cortical neurons activated by environmental and proprioceptive stimuli. Glutamate initiates a wave of phosphorylation normally followed by a wave of phosphatase activity. If dopaminergic neurons fire, stimulation of D1 receptors prolongs the wave of phosphorylation, allowing glutamate synaptic strengthening. Activity in dopaminergic neurons in humans appears to affect mental experience.


Daedalus ◽  
2015 ◽  
Vol 144 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Larry R. Squire ◽  
John T. Wixted

A major development in understanding the structure and organization of memory was the identification of the medial temporal lobe memory system as one of the brain systems that support memory. Work on this topic began in the 1950s with the study of the noted amnesic patient H.M. and culminated in studies of an animal model of human memory impairment in the nonhuman primate. These discoveries opened new frontiers of research concerned with the functional specialization of structures within the medial temporal lobe, the existence of multiple memory systems, the process of memory consolidation, and the role of neural replay and sleep in the consolidation process. This work also led to new insights about how and where memories are ultimately stored in the brain. All of this research has improved our understanding of how memory is affected by normal aging and why it is so profoundly impaired by the pathological processes associated with dementia.


1990 ◽  
Vol 329 (1253) ◽  
pp. 99-108 ◽  

Learning, and hence memory, is ubiquitous not only throughout the animal kingdom, but apparently throughout many regions of the brain. Is all learning reducible to a single common form? Neuropsychological dissociations suggest that the mammalian brain possesses a number of different and potentially independent memory systems, with different mechanisms and anatomical dispositions, some of which are neurally widely dispersed and others of which are narrowly organized.


2021 ◽  
pp. 1-18
Author(s):  
Samuel D. McDougle ◽  
Sarah A. Wilterson ◽  
Nicholas B. Turk-Browne ◽  
Jordan A. Taylor

Abstract Classic taxonomies of memory distinguish explicit and implicit memory systems, placing motor skills squarely in the latter branch. This assertion is in part a consequence of foundational discoveries showing significant motor learning in amnesics. Those findings suggest that declarative memory processes in the medial temporal lobe (MTL) do not contribute to motor learning. Here, we revisit this issue, testing an individual (L. S. J.) with severe MTL damage on four motor learning tasks and comparing her performance to age-matched controls. Consistent with previous findings in amnesics, we observed that L. S. J. could improve motor performance despite having significantly impaired declarative memory. However, she tended to perform poorly relative to age-matched controls, with deficits apparently related to flexible action selection. Further supporting an action selection deficit, L. S. J. fully failed to learn a task that required the acquisition of arbitrary action–outcome associations. We thus propose a modest revision to the classic taxonomic model: Although MTL-dependent memory processes are not necessary for some motor learning to occur, they play a significant role in the acquisition, implementation, and retrieval of action selection strategies. These findings have implications for our understanding of the neural correlates of motor learning, the psychological mechanisms of skill, and the theory of multiple memory systems.


Sign in / Sign up

Export Citation Format

Share Document