scholarly journals Evans Blue Dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability

2002 ◽  
Vol 200 (1) ◽  
pp. 69-79 ◽  
Author(s):  
P. W. Hamer ◽  
J. M. McGeachie ◽  
M. J. Davies ◽  
M. D. Grounds
2004 ◽  
Vol 286 (5) ◽  
pp. H1916-H1922 ◽  
Author(s):  
Heather A. Himburg ◽  
Deborah M. Grzybowski ◽  
Andrew L. Hazel ◽  
Jeffrey A. LaMack ◽  
Xue-Mei Li ◽  
...  

A better understanding of how hemodynamic factors affect the integrity and function of the vascular endothelium is necessary to appreciate more fully how atherosclerosis is initiated and promoted. A novel technique is presented to assess the relation between fluid dynamic variables and the permeability of the endothelium to macromolecules. Fully anesthetized, domestic swine were intravenously injected with the albumin marker Evans blue dye, which was allowed to circulate for 90 min. After the animals were euthanized, silicone casts were made of the abdominal aorta and its iliac branches. Pulsatile flow calculations were subsequently made in computational regions derived from the casts. The distribution of the calculated time-dependent wall shear stress in the external iliac branches was directly compared on a point-by-point basis with the spatially varying in vivo uptake of Evans blue dye in the same arteries. The results indicate that in vivo endothelial permeability to albumin decreases with increasing time-average shear stress over the normal range. Additionally, endothelial permeability increases slightly with oscillatory shear index.


1989 ◽  
Vol 21 (4) ◽  
pp. 309-315 ◽  
Author(s):  
Duncan F. Rogers ◽  
Piera Boschetto ◽  
Peter J. Barnes

BioTechniques ◽  
2020 ◽  
Author(s):  
Samuel E Honeycutt ◽  
Lori L O'Brien

Blood vessels perform critical functions in both health and disease. Understanding how vessels form, pattern and respond to damage is essential. However, labeling and imaging the vasculature to ascertain these properties can be difficult and time-consuming. Here, the authors present a novel methodology for rapidly and efficiently labeling whole vascular networks in vivo by exploiting the fluorescent properties of Evans blue. By combining the labeling with fluorescence microscopy, this method enables visualization of whole tissue vasculature for a fraction of the time and cost compared with traditional methods.


2004 ◽  
Vol 82 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Gabrielle Gendron ◽  
Bryan Simard ◽  
Fernand Gobeil, Jr. ◽  
Pierre Sirois ◽  
Pedro D'Orléans-Juste ◽  
...  

Plasma extravasation (PE) was measured in adult Wistar rats by injecting Evans blue dye (EB) (20 mg kg–1) intravenously in the absence or presence of human urotensin II (U-II) (0.1–10 nmol kg–1). A consistent increase of PE was observed in specific organs (e.g., aorta, from 28.1 ± 2.4 to 74.6 ± 3.6 µg EB g–1 dry tissue; P < 0.001) after an administration of 4.0 nmol kg–1 (a preselected optimal dose) of U-II. The effects of U-II (4.0 nmol kg–1) were compared with those of endothelin-1 (ET-1) (1.0 nmol kg–1). In the thoracic aorta and pancreas, U-II was active, while ET-1 was not. The two agents were equivalent in the heart and kidney, whereas, in the duodenum, ET-1 was more active than U-II. Increases of plasma extravasation induced by U-II, but not by ET-1, were reduced after treatment with [Orn8]U-II (0.3 µmol kg–1). This latter antagonist did not show any significant residual agonistic activity in vivo in the rat. Other specific receptor antagonists for ET-1, such as BQ-123 (endothelin type A (ETA) receptor) and BQ-788 (endothelin type B (ETB) receptor), and for the platelet activating factor (PAF), such as BN50730, failed to modify the action of U-II. The present study is the first report describing the modulator roles of U-II on vascular permeability in specific organs. Moreover, the action of U-II appears specific, since it is independent of the ET-1 and PAF signalling pathways.Key words: urotensin-II, receptors antagonists, Evans blue dye, vascular permeability, rats.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Kate Hsiurong Liao ◽  
Eva Yuhua Kuo ◽  
Kuen‐Bao Chen ◽  
Ted Weita Lai

2009 ◽  
Vol 14 (5) ◽  
pp. 054049 ◽  
Author(s):  
Junjie Yao ◽  
Konstantin Maslov ◽  
Song Hu ◽  
Lihong V. Wang

1998 ◽  
Vol 24 (2) ◽  
pp. 159-172 ◽  
Author(s):  
Magnus Svartengren ◽  
Patrik Skogward ◽  
Ola Nerbrink ◽  
Magnus Dahlbäck

2007 ◽  
Author(s):  
George K. Lewis Jr. ◽  
Willam L. Olbricht ◽  
George Lewis
Keyword(s):  
Blue Dye ◽  

1983 ◽  
Vol 55 (4) ◽  
pp. 1262-1268 ◽  
Author(s):  
G. R. Mason ◽  
R. M. Effros

An in situ rabbit preparation was used to characterize the manner in which edema fluid enters the airways when left atrial pressures are elevated. The airways were initially filled with fluid to minimize retrograde flow of edema fluid into the alveoli. The airway solution contained 125I-albumin and in some studies [14C]sucrose, and the lungs were perfused with a comparable solution which contained albumin labeled with Evans blue dye and 99mTc-diethylenetriaminepentaacetate (DTPA) or 99mTc-sulfur-colloid particles (0.4-1.7 micron diam). After 30 min of perfusion, fluid was pumped from the airways into serial tubes. When left atrial pressures were low, there was very little transfer of labels detectable between the airway and perfusate solutions. However when left atrial pressures were increased to either 15 or 22 cmH2O, fluid entered the airways containing approximately the same concentrations of Evans blue dye and 99mTc-DTPA as those present in the perfusate. In contrast, the concentration of colloid particles averaged less than 5% perfusate concentrations, indicating that the fluid had not escaped through a tear in the barriers separating the vascular and airway compartments. Concentrations of the perfusate fluid and indicators were highest in the initial samples pumped from the airways. These observations suggest that some of the fluid entering the airways may be derived from peribronchial cuffs or that there are marked regional differences in edema formation from alveoli.


Sign in / Sign up

Export Citation Format

Share Document