Flow of edema fluid into pulmonary airways

1983 ◽  
Vol 55 (4) ◽  
pp. 1262-1268 ◽  
Author(s):  
G. R. Mason ◽  
R. M. Effros

An in situ rabbit preparation was used to characterize the manner in which edema fluid enters the airways when left atrial pressures are elevated. The airways were initially filled with fluid to minimize retrograde flow of edema fluid into the alveoli. The airway solution contained 125I-albumin and in some studies [14C]sucrose, and the lungs were perfused with a comparable solution which contained albumin labeled with Evans blue dye and 99mTc-diethylenetriaminepentaacetate (DTPA) or 99mTc-sulfur-colloid particles (0.4-1.7 micron diam). After 30 min of perfusion, fluid was pumped from the airways into serial tubes. When left atrial pressures were low, there was very little transfer of labels detectable between the airway and perfusate solutions. However when left atrial pressures were increased to either 15 or 22 cmH2O, fluid entered the airways containing approximately the same concentrations of Evans blue dye and 99mTc-DTPA as those present in the perfusate. In contrast, the concentration of colloid particles averaged less than 5% perfusate concentrations, indicating that the fluid had not escaped through a tear in the barriers separating the vascular and airway compartments. Concentrations of the perfusate fluid and indicators were highest in the initial samples pumped from the airways. These observations suggest that some of the fluid entering the airways may be derived from peribronchial cuffs or that there are marked regional differences in edema formation from alveoli.

Neurosurgery ◽  
1990 ◽  
Vol 27 (6) ◽  
pp. 901-906 ◽  
Author(s):  
S. Lownie ◽  
X. Wu ◽  
S. Karlik ◽  
A.W. Gelb

Abstract This study evaluated the hypothesis that the postoperative formation of cerebral edema may be influenced by the rate of blood pressure return after induced hypotension in a graded brain retractor injury. Nineteen cats underwent unilateral craniotomy, isoflurane-induced hypotension to a mean of 50 mm Hg, and application of a brain retractor at 20 mm Hg of pressure for 1 hour. Blood pressure was returned to normal either within 3 minutes or over 20 minutes. The degree of cerebral edema formation was determined by Evans blue dye and coronal magnetic resonance imaging. All animals showed extravasation of Evans blue dye in the retracted hemisphere that was most marked at the periphery of the retractor. T1 relaxation times were significantly prolonged in the retracted hemispheres of both the fast return and slow return groups (18.8% and 17.8%, respectively) and more so at the Evans blue sites (42.8% and 40.8%), although not so strikingly beneath the retractor itself (6.3% and 7.8%). T2 relaxation times were similarly prolonged but to approximately half the degree of the T1 times. In the nonretracted hemisphere, drug-induced hypotension alone did not result in significant acute cerebral edema or blood-brain barrier alteration. There was no significant difference between the fast and slow groups in Evans blue extravasation or magnetic resonance changes. Thus, in a retractor-induced brain injury, restoration of arterial pressure to normal either gradually or rapidly did not influence the degree or extent of edema formation.


1998 ◽  
Vol 24 (2) ◽  
pp. 159-172 ◽  
Author(s):  
Magnus Svartengren ◽  
Patrik Skogward ◽  
Ola Nerbrink ◽  
Magnus Dahlbäck

2007 ◽  
Author(s):  
George K. Lewis Jr. ◽  
Willam L. Olbricht ◽  
George Lewis
Keyword(s):  
Blue Dye ◽  

1977 ◽  
Vol 23 (3) ◽  
pp. 331-336 ◽  
Author(s):  
S. Stavric ◽  
D. Jeffrey

Infant mice were injected orally with preparations containing Escherichia coli heat-stable enterotoxin (ST) and Evans blue dye, and incubated at 22 °C. With enterotoxin-positive samples, the stomach was distended and contained essentially all of the dye. With enterotoxin-negative samples, the stomach remained normal in size and the dye passed freely into the intestines. The time required to obtain the maximum ratio of gut weight to body weight varied from 30 to 90 min and was dependent upon the concentration of enterotoxin. Heat-labile enterotoxin (LT) had no effect during this period.Based on these findings, the mouse incubation time was reduced from 4 h to 90 min, and the heating of test samples was retained only for confirmation of ST. The location of the dye and stomach distention served as an indicator of positive responses to ST. Incubation of the mice at room temperature (22 °C) was found satisfactory.


2006 ◽  
Vol 34 (3) ◽  
pp. 264-271 ◽  
Author(s):  
Q-H Ke ◽  
T-B Liang ◽  
J Yu ◽  
S-S Zheng

The development of central pontine myelinolysis was studied in rats. Severe hyponatraemia was induced using vasopressin tannate and 2.5% dextrose in water and then rapidly corrected with hypertonic saline alone, hypertonic saline and dexamethasone simultaneously, or hypertonic saline plus dexamethasone 24 h later. The permeability of the blood-brain barrier was evaluated using the extravasation of Evans blue dye and the expression of inducible nitric oxide synthase (iNOS) in the brain was examined using Western blot analysis. Histological sections were examined for demyelinating lesions. In rats receiving hypertonic saline alone, Evans blue dye content and expression of iNOS began to increase 6 and 3 h, respectively, after rapid correction of hyponatraemia and demyelinating lesions were seen. When dexamethasone was given simultaneously with hypertonic saline, these increases were inhibited and demyelinating lesions were absent. These effects were lost if dexamethasone injection was delayed. Disruption of the blood-brain barrier and increased iNOS expression may be involved in the pathogenesis of central pontine myelinolysis, and early treatment with dexamethasone may help prevent the development of central pontine myelinolysis.


1982 ◽  
Vol 38 (3) ◽  
pp. 932-937 ◽  
Author(s):  
A J Crowle ◽  
M H May
Keyword(s):  
Blue Dye ◽  

2006 ◽  
Vol 13 (5) ◽  
pp. 692-700 ◽  
Author(s):  
Chris Tsopelas ◽  
Elaine Bevington ◽  
James Kollias ◽  
Sabah Shibli ◽  
Gelareh Farshid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document