Quantifying uncertainty in estimates of C emissions from above-ground biomass due to historic land-use change to cropping in Australia

2001 ◽  
Vol 7 (8) ◽  
pp. 883-902 ◽  
Author(s):  
Damian J. Barrett ◽  
Ian E. Galbally ◽  
R. Dean Graetz
Land ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 209
Author(s):  
Frederick Gyasi Damptey ◽  
Klaus Birkhofer ◽  
Paul Kofi Nsiah ◽  
Enrique G. de la Riva

The ongoing global deforestation resulting from anthropogenic activities such as unsustainable agriculture and surface mining threatens biodiversity and decreases both soil carbon and above-ground biomass stocks. In this study, we assessed soil properties and below- and above-ground biomass attributes in a restored former gravel mine area in Ghana two decades after active restoration with potted plants and fresh topsoil. We compared conditions to four alternative land-use types (unrestored abandoned gravel mine, arable land, semi-natural forest, and natural forest) representing pre- and post-disturbance as well as natural reference states. We hypothesized that soil properties and related levels of below- and above-ground biomass in the restored area share similarities with the natural reference systems and thereby are indicative of a trajectory towards successful restoration. Eight replicated subareas in each land-use type were assessed for a set of soil parameters as well as below- and above-ground biomass attributes. The soil properties characteristic for the restored area differed significantly from pre-restoration stages, such as the abandoned gravel site, but did not differ significantly from properties in the natural forest (except for bulk density and base saturation). Above-ground biomass was lower in the restored area in comparison to the reference natural forests, while differences were not significant for below-ground biomass. Silt and effective cation exchange capacity were closely related to above-ground biomass, while below-ground biomass was related to soil organic carbon, bulk density, and potassium concentration in soils. Our results suggest that major steps towards successful restoration can be accomplished within a relatively short period, without the wholesale application of topsoil. Improving soil conditions is a vital tool for the successful development of extensive vegetation cover after surface mining, which also affects carbon sequestration by both above- and below-ground biomass. We emphasize that the use of reference systems provides critical information for the monitoring of ecosystem development towards an expected future state of the restored area.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 765 ◽  
Author(s):  
Latati ◽  
Dokukin ◽  
Aouiche ◽  
Rebouh ◽  
Takouachet ◽  
...  

Little is known about how the performance of legumes symbiosis affects biomass and nutrient accumulation by intercropped cereals under the field condition. To assess the agricultural services of an intercropping system; durum wheat (Triticum turgidum durum L.cv. VITRON) and chickpea (Cicer arietinum L.cv. FLIP 90/13 C) were cultivated as both intercrops and sole cropping during two growing seasons under the field trial, to compare plant biomass, nodulation, N and phosphorus (P) uptake, and N nutrition index. Both the above-ground biomass and grain yield and consequently, the amount of N taken up by intercropped durum wheat increased significantly (44%, 48%, and 30%, respectively) compared with sole cropping during the two seasons. However, intercropping decreased P uptake by both durum wheat and chickpea. The efficiency in use of rhizobial symbiosis (EURS) for intercropped chickpea was significantly higher than for chickpea grown as sole cropping. The intercropped chickpea considerably increased N (49%) and P (75%) availability in durum wheat rhizosphere. In the case of chickpea shoot, the N nutrition (defined by the ratio between actual and critical N uptake by crop) and acquisition were higher in intercropping during only the first year of cropping. Moreover, biomass, grin yield, and resource (N and P) use efficiency were significantly improved, as indicated by higher land equivalent ratio (LER > 1) in intercropping over sole cropping treatments. Our findings suggest that change in the intercropped chickpea rhizosphere-induced parameters facilitated P and N uptake, above-ground biomass, grain yield, and land use efficiency for wheat crop.


2019 ◽  
Vol 34 (3-4) ◽  
pp. 263-283
Author(s):  
Robert Mendelsohn ◽  
Brent Sohngen

2020 ◽  
Vol 12 (20) ◽  
pp. 3351
Author(s):  
Sawaid Abbas ◽  
Man Sing Wong ◽  
Jin Wu ◽  
Naeem Shahzad ◽  
Syed Muhammad Irteza

Tropical forests are acknowledged for providing important ecosystem services and are renowned as “the lungs of the planet Earth” due to their role in the exchange of gasses—particularly inhaling CO2 and breathing out O2—within the atmosphere. Overall, the forests provide 50% of the total plant biomass of the Earth, which accounts for 450–650 PgC globally. Understanding and accurate estimates of tropical forest biomass stocks are imperative in ascertaining the contribution of the tropical forests in global carbon dynamics. This article provides a review of remote-sensing-based approaches for the assessment of above-ground biomass (AGB) across the tropical forests (global to national scales), summarizes the current estimate of pan-tropical AGB, and discusses major advancements in remote-sensing-based approaches for AGB mapping. The review is based on the journal papers, books and internet resources during the 1980s to 2020. Over the past 10 years, a myriad of research has been carried out to develop methods of estimating AGB by integrating different remote sensing datasets at varying spatial scales. Relationships of biomass with canopy height and other structural attributes have developed a new paradigm of pan-tropical or global AGB estimation from space-borne satellite remote sensing. Uncertainties in mapping tropical forest cover and/or forest cover change are related to spatial resolution; definition adapted for ‘forest’ classification; the frequency of available images; cloud covers; time steps used to map forest cover change and post-deforestation land cover land use (LCLU)-type mapping. The integration of products derived from recent Synthetic Aperture Radar (SAR) and Light Detection and Ranging (LiDAR) satellite missions with conventional optical satellite images has strong potential to overcome most of these uncertainties for recent or future biomass estimates. However, it will remain a challenging task to map reference biomass stock in the 1980s and 1990s and consequently to accurately quantify the loss or gain in forest cover over the periods. Aside from these limitations, the estimation of biomass and carbon balance can be enhanced by taking account of post-deforestation forest recovery and LCLU type; land-use history; diversity of forest being recovered; variations in physical attributes of plants (e.g., tree height; diameter; and canopy spread); environmental constraints; abundance and mortalities of trees; and the age of secondary forests. New methods should consider peak carbon sink time while developing carbon sequestration models for intact or old-growth tropical forests as well as the carbon sequestration capacity of recovering forest with varying levels of floristic diversity.


2019 ◽  
Vol 31 (5) ◽  
pp. 1733-1742
Author(s):  
Sutheera Hermhuk ◽  
Aingorn Chaiyes ◽  
Sathid Thinkampheang ◽  
Noppakun Danrad ◽  
Dokrak Marod

2021 ◽  
Vol 38 (2) ◽  
pp. 111-123
Author(s):  
Yelly-Yamparli Pardo-Rozo ◽  
Hernán-Jair Andrade-Castañeda ◽  
Jader Muñoz-Ramos ◽  
Jaime-Enrique Velásquez-Restrepo

The main strategies to combat climate change are reducing greenhouse gas (GHG) emissions and increasing carbon sinks in terrestrial ecosystems such as forests, forest plantations, and agroforestry systems. Deforestation and land use changes in the Amazonia bear great responsibility both for the fixation and emission of GHG. The aim of this research was to estimate the carbon stored in above-ground biomass of forests, rubber plantations (Hevea brasiliensis Muell Arg.), and trees in pastures in the Colombian Amazonia piedmont. Data was collected in 40 farms located in the rural area of the municipality of Belén de Los Andaquíes (Colombia). A total of 174 temporal sampling plots of 250 m2 each were established (80 in forests, 40 in rubber plantations and 54 in pastures with trees). In these plots, the diameter at breast height (dbh) was measured in trees with dbh ≥ 10 cm, and the above-ground biomass was estimated with allometric models for the Colombian Amazon. The carbon stored was 154.1 Mg ha-1 in forests, 1.4 Mg ha-1 in pastures with trees and 138.9 Mg ha-1 in rubber plantations. Positive changes for mitigation of climate change could be achieved through the conversion of agricultural areas, mainly pastures, to forests (+560 Mg CO2 ha-1). Likewise, if deforestation stops in the area, the estimated emissions reduction would be 0.16 Tg CO2 year-1.


2001 ◽  
Vol 26 (4) ◽  
pp. 409-427 ◽  
Author(s):  
Gregory B. Pasternack ◽  
Grace S. Brush ◽  
William B. Hilgartner

Sign in / Sign up

Export Citation Format

Share Document