Estimating the slip rates of normal faults in the Great Basin, USA

2000 ◽  
Vol 12 (3-4) ◽  
pp. 227-240 ◽  
Author(s):  
C. M. dePolo ◽  
J. G. Anderson
Keyword(s):  
2000 ◽  
Vol 12 (3-4) ◽  
pp. 227-240 ◽  
Author(s):  
C. M. DePolo ◽  
J. G. Anderson
Keyword(s):  

2019 ◽  
Vol 131 (9-10) ◽  
pp. 1440-1458
Author(s):  
Charles R. Bacon ◽  
Joel E. Robinson

Abstract Volcanoes of subduction-related magmatic arcs occur in a variety of crustal tectonic regimes, including where active faults indicate arc-normal extension. The Cascades arc volcano Mount Mazama overlaps on its west an ∼10-km-wide zone of ∼north-south–trending normal faults. A lidar (light detection and ranging) survey of Crater Lake National Park, reveals several previously unrecognized faults west of the caldera. Postglacial vertical separations measured from profiles across scarps range from ∼2 m to as much as 12 m. Scarp profiles commonly suggest two or more postglacial surface-rupturing events. Ignimbrite of the ca. 7.6 ka climactic eruption of Mount Mazama, during which Crater Lake caldera formed, appears to bury fault strands where they project into thick, valley-filling ignimbrite. Lack of lateral offset of linear features suggests principally normal displacement, although predominant left stepping of scarp strands implies a component of dextral slip. West-northwest–east-southeast and north-northwest–south-southeast linear topographic elements, such as low scarps or ridges, shallow troughs, and straight reaches of streams, suggest that erosion was influenced by distributed shear, consistent with GPS vectors and clockwise rotation of the Oregon forearc block. Surface rupture lengths (SRL) of faults suggest earthquakes of (moment magnitude) Mw6.5 from empirical scaling relationships. If several faults slipped in one event, a combined SRL of 44 km suggests an earthquake of Mw7.0. Postglacial scarps as high as 12 m imply maximum vertical slip rates of 1.5 mm/yr for the zone west of Crater Lake, considerably higher than the ∼0.3 mm/yr long-term rate for the nearby West Klamath Lake fault zone. An unanswered question is the timing of surface-rupturing earthquakes relative to the Mazama climactic eruption. The eruption may have been preceded by a large earthquake. Alternatively, large surface-rupturing earthquakes may have occurred during the eruption, a result of decrease in east-west compressive stress during ejection of ∼50 km3 of magma and concurrent caldera collapse.


2017 ◽  
Vol 210 (2) ◽  
pp. 1206-1218 ◽  
Author(s):  
Zoe K. Mildon ◽  
Gerald P. Roberts ◽  
Joanna P. Faure Walker ◽  
Francesco Iezzi

Abstract In order to investigate the importance of including strike-variable geometry and the knowledge of historical and palaeoseismic earthquakes when modelling static Coulomb stress transfer and rupture propagation, we have examined the August–October 2016 A.D. and January 2017 A.D. central Apennines seismic sequence (Mw 6.0, 5.9, 6.5 in 2016 A.D. (INGV) and Mw 5.1, 5.5, 5.4, 5.0 in 2017 A.D. (INGV)). We model both the coseismic loading (from historical and palaeoseismic earthquakes) and interseismic loading (derived from Holocene fault slip-rates) using strike-variable fault geometries constrained by fieldwork. The inclusion of the elapsed times from available historical and palaeoseismological earthquakes and on faults enables us to calculate the stress on the faults prior to the beginning of the seismic sequence. We take account the 1316–4155 yr elapsed time on the Mt. Vettore fault (that ruptured during the 2016 A.D. seismic sequence) implied by palaeoseismology, and the 377 and 313 yr elapsed times on the neighbouring Laga and Norcia faults respectively, indicated by the historical record. The stress changes through time are summed to show the state of stress on the Mt. Vettore, Laga and surrounding faults prior to and during the 2016–2017 A.D. sequence. We show that the build up of stress prior to 2016 A.D. on strike-variable fault geometries generated stress heterogeneities that correlate with the limits of the main-shock ruptures. Hence, we suggest that stress barriers appear to have control on the propagation and therefore the magnitudes of the main-shock ruptures.


Geosites ◽  
2019 ◽  
Vol 1 ◽  
pp. 1-12
Author(s):  
Robert Biek

The Hurricane fault is the big earthquake fault in southwestern Utah. It stretches at least 155 miles (250 km) from south of the Grand Canyon northward to Cedar City and is capable of producing damaging earthquakes of about magnitude 7.0. The Hurricane fault is a “normal” fault, a type of fault that forms during extension of the earth’s crust, where one side of the fault moves down relative to the other side. In this case, the down-dropped side (the hanging wall) is west of the fault; the upthrown side (the footwall) lies to the east. Like most long normal faults, the Hurricane fault is composed of discrete segments that tend to rupture independently (figure 1). The fault lies at or near the base of the Hurricane Cliffs, which form an impressive, little-eroded fault scarp several hundred feet high. Conspicuous, west-tilted, faulted slivers of mostly Triassic and Jurassic red beds are locally exposed at the base of the cliffs, and contrast strongly with gray Permian carbonates exposed in the cliffs themselves. Several Pleistocene basaltic lava flows flowed across and are now offset by the fault zone, dramatically recording long-term slip rates. Should you make the mistake of pronouncing the name “Hurricane” as one would when describing a mighty storm on the East Coast, you should stand to be corrected, for locals pronounce it as “Hurricun” even though pioneers named the town after ferocious winds common to the local area.


Author(s):  
Ben Surpless ◽  
Sarah Thorne

Normal faults are commonly segmented along strike, with segments that localize strain and influence propagation of slip during earthquakes. Although the geometry of segments can be constrained by fault mapping, it is challenging to determine seismically relevant segments along a fault zone. Because slip histories, geometries, and strengths of linkages between normal fault segments fundamentally control the propagation of rupture during earthquakes, and differences in segment slip rates result in differential uplift of adjacent footwalls, we used along-strike changes in footwall morphology to detect fault segments and the relative strength of the mechanical links between them. We applied a new geomorphic analysis protocol to the Wassuk Range fault, Nevada, within the actively deforming Walker Lane. The protocol examines characteristics of footwall morphology, including range-crest continuity, bedrock-channel long profiles, catchment area variability, and footwall relief, to detect changes in strike-parallel footwall characteristics. Results revealed six domains with significant differences in morphology that we used to identify seismically relevant fault segments and segment boundaries. We integrated our results with previous studies to determine relative strength of links between the six segments, informing seismic hazard assessment. When combined with recent geodetic studies, our results have implications for the future evolution of the Walker Lane, suggesting changes in the accommodation of strain across the region. Our analysis demonstrates the power of this method to efficiently detect along-strike changes in footwall morphology related to fault behavior, permitting future researchers to perform reconnaissance assessment of normal fault segmentation worldwide.


2001 ◽  
Vol 23 (12) ◽  
pp. 1901-1915 ◽  
Author(s):  
Patience A Cowie ◽  
Gerald P Roberts
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document