scholarly journals Hurricane Fault

Geosites ◽  
2019 ◽  
Vol 1 ◽  
pp. 1-12
Author(s):  
Robert Biek

The Hurricane fault is the big earthquake fault in southwestern Utah. It stretches at least 155 miles (250 km) from south of the Grand Canyon northward to Cedar City and is capable of producing damaging earthquakes of about magnitude 7.0. The Hurricane fault is a “normal” fault, a type of fault that forms during extension of the earth’s crust, where one side of the fault moves down relative to the other side. In this case, the down-dropped side (the hanging wall) is west of the fault; the upthrown side (the footwall) lies to the east. Like most long normal faults, the Hurricane fault is composed of discrete segments that tend to rupture independently (figure 1). The fault lies at or near the base of the Hurricane Cliffs, which form an impressive, little-eroded fault scarp several hundred feet high. Conspicuous, west-tilted, faulted slivers of mostly Triassic and Jurassic red beds are locally exposed at the base of the cliffs, and contrast strongly with gray Permian carbonates exposed in the cliffs themselves. Several Pleistocene basaltic lava flows flowed across and are now offset by the fault zone, dramatically recording long-term slip rates. Should you make the mistake of pronouncing the name “Hurricane” as one would when describing a mighty storm on the East Coast, you should stand to be corrected, for locals pronounce it as “Hurricun” even though pioneers named the town after ferocious winds common to the local area.

2004 ◽  
Vol 52 (3) ◽  
pp. 215-233 ◽  
Author(s):  
Glen S. Stockmal ◽  
Art Slingsby ◽  
John W.F. Waldron

Abstract Recent hydrocarbon exploration in western Newfoundland has resulted in six new wells in the Port au Port Peninsula area. Port au Port No.1, drilled in 1994/95, penetrated the Cambro-Ordovician platform and underlying Grenville basement in the hanging wall of the southeast-dipping Round Head Thrust, terminated in the platform succession in the footwall of this basement-involved inversion structure, and discovered the Garden Hill petroleum pool. The most recent well, Shoal Point K-39, was drilled in 1999 to test a model in which the Round Head Thrust loses reverse displacement to the northeast, eventually becoming a normal fault. This model hinged on an interpretation of a seismic reflection survey acquired in 1996 in Port au Port Bay. This survey is now in the public domain. In our interpretation of these data, the Round Head Thrust is associated with another basement-involved feature, the northwest-dipping Piccadilly Bay Fault, which is mapped on Port au Port Peninsula. Active as normal faults in the Taconian foreland, both these faults were later inverted during Acadian orogenesis. The present reverse offset on the Piccadilly Bay Fault was previously interpreted as normal offset on the southeast-dipping Round Head Thrust. Our new interpretation is consistent with mapping on Port au Port Peninsula and north of Stephenville, where all basement-involved faults are inverted and display reverse senses of motion. It also explains spatially restricted, enigmatic reflections adjacent to the faults as carbonate conglomerates of the Cape Cormorant Formation or Daniel’s Harbour Member, units associated with inverted thick-skinned faults. The K-39 well, which targeted the footwall of the Round Head Thrust, actually penetrated the hanging wall of the Piccadilly Bay Fault. This distinction is important because the reservoir model invoked for this play involved preferential karstification and subsequent dolomitization in the footwalls of inverted thick-skinned faults. The apparent magnitude of structural inversion across the Piccadilly Bay Fault suggests other possible structural plays to the northeast of K-39.


Author(s):  
Ben Surpless ◽  
Sarah Thorne

Normal faults are commonly segmented along strike, with segments that localize strain and influence propagation of slip during earthquakes. Although the geometry of segments can be constrained by fault mapping, it is challenging to determine seismically relevant segments along a fault zone. Because slip histories, geometries, and strengths of linkages between normal fault segments fundamentally control the propagation of rupture during earthquakes, and differences in segment slip rates result in differential uplift of adjacent footwalls, we used along-strike changes in footwall morphology to detect fault segments and the relative strength of the mechanical links between them. We applied a new geomorphic analysis protocol to the Wassuk Range fault, Nevada, within the actively deforming Walker Lane. The protocol examines characteristics of footwall morphology, including range-crest continuity, bedrock-channel long profiles, catchment area variability, and footwall relief, to detect changes in strike-parallel footwall characteristics. Results revealed six domains with significant differences in morphology that we used to identify seismically relevant fault segments and segment boundaries. We integrated our results with previous studies to determine relative strength of links between the six segments, informing seismic hazard assessment. When combined with recent geodetic studies, our results have implications for the future evolution of the Walker Lane, suggesting changes in the accommodation of strain across the region. Our analysis demonstrates the power of this method to efficiently detect along-strike changes in footwall morphology related to fault behavior, permitting future researchers to perform reconnaissance assessment of normal fault segmentation worldwide.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Magali Riesner ◽  
Laurent Bollinger ◽  
Judith Hubbard ◽  
Cyrielle Guérin ◽  
Marthe Lefèvre ◽  
...  

AbstractThe largest (M8+) known earthquakes in the Himalaya have ruptured the upper locked section of the Main Himalayan Thrust zone, offsetting the ground surface along the Main Frontal Thrust at the range front. However, out-of-sequence active structures have received less attention. One of the most impressive examples of such faults is the active fault that generally follows the surface trace of the Main Boundary Thrust (MBT). This fault has generated a clear geomorphological signature of recent deformation in eastern and western Nepal, as well as further west in India. We focus on western Nepal, between the municipalities of Surkhet and Gorahi where this fault is well expressed. Although the fault system as a whole is accommodating contraction, across most of its length, this particular fault appears geomorphologically as a normal fault, indicating crustal extension in the hanging wall of the MHT. We focus this study on the reactivation of the MBT along the Surkhet-Gorahi segment of the surface trace of the newly named Reactivated Boundary Fault, which is ~ 120 km long. We first generate a high-resolution Digital Elevation Model from triplets of high-resolution Pleiades images and use this to map the fault scarp and its geomorphological lateral variation. For most of its length, normal motion slip is observed with a dip varying between 20° and 60° and a maximum cumulative vertical offset of 27 m. We then present evidence for recent normal faulting in a trench located in the village of Sukhetal. Radiocarbon dating of detrital charcoals sampled in the hanging wall of the fault, including the main colluvial wedge and overlying sedimentary layers, suggest that the last event occurred in the early sixteenth century. This period saw the devastating 1505 earthquake, which produced ~ 23 m of slip on the Main Frontal Thrust. Linked or not, the ruptures on the MFT and MBT happened within a short time period compared to the centuries of quiescence of the faults that followed. We suggest that episodic normal-sense activity of the MBT could be related to large earthquakes rupturing the MFT, given its proximity, the sense of motion, and the large distance that separates the MBT from the downdip end of the locked fault zone of the MHT fault system. We discuss these results and their implications for the frontal Himalayan thrust system.


Author(s):  
Glenn Thackray ◽  
Mark Zellman ◽  
Jason Altekruse ◽  
Bruno Protti ◽  
Harrison Colandera

Preliminary results from seismic data collected at two sites on the Teton fault reveal shallow sub-surface fault structure and a basis for evaluating the post-glacial faulting record in greater detail. These new data include high-resolution shallow 2D seismic refraction and Interferometric Multi-Channel Analysis of Surface Waves (IMASW) (O’Connell and Turner 2010) depth-averaged shear wave velocity (Vs). The Teton fault, a down-to-the east normal fault, is expressed as a distinct topographic escarpment along the base of the eastern front of the Teton Range in Wyoming. The average fault scarp height cut into deglacial surfaces in several similar valleys and an assumed 14,000 yr BP deglaciation indicates an average postglacial offset rate of 0.82 m/ka (Thackray and Staley, in review). Because the fault is located almost entirely within Grand Teton National Park (GTNP), and in terrain that is remote and difficult to access, very few subsurface studies have been used to evaluate the fault. As a result, many uncertainties exist in the present characterization of along-strike slip rate, down-dip geometry, and rupture history, among other parameters. Additionally, questions remain about the fault dip at depth. Shallow seismic data were collected at two locations on the Teton fault scarp to (1) use a non-destructive, highly portable and cost-effective data collection system to image and characterize the Teton fault, (2) use the data to estimate vertical offsets of faulted bedrock and sediment, and (3) estimate fault dip in the shallow subsurface. Vs data were also collected at three GTNP facility structures to provide measured 30 m depth-averaged Vs (Vs30) for each site. Seismic data were collected using highly portable equipment packed into each site on foot. The system utilizes a sensor line 92 m long that includes 24 geophones (channels) at 4 m intervals. At both the Taggart Lake and String Lake sites, P-wave refraction data were collected spanning the fault scarp and perpendicular to local fault strike, as well as IMASW Vs seismic lines positioned on the hanging wall to provide Vs vs. Depth profiles crossing and perpendicular to the refraction survey lines. The Taggart Lake and String Lake 2D P-wave refraction profile and IMASW Vs plots reveal buried velocity structure that is vertically offset by the Teton fault. At Taggart Lake, we interpret the velocity horizon to be the top of dense glacial sediment (possibly compacted till), which is overlain by younger, slower, sediments. This surface is offset ~13 m (down-to-the-east) across the Teton fault. The vertical offset is in agreement with the measured height of the corresponding topographic scarp (~12 - 15 m). Geomorphic analysis of EarthScope (2008) LiDAR reveals small terraces, slope inflections and an abandoned channel on the footwall side of the scarp. At String Lake, the shallow buried velocity structure is inferred as unconsolidated alluvium (till, colluvium, alluvium); this relatively low velocity zone (


2020 ◽  
Vol 57 (3) ◽  
pp. 271-304
Author(s):  
Edward J. Sterne

This study was undertaken to determine the structure and genesis of the Boulder-Weld allochthon (BWA), the 216 mi2 (559 km2) remnant of a once larger feature, that moved east from the flank of the Front Range into the western part of the Denver Basin. This review of surface and subsurface data revealed new aspects of the BWA, especially in its western part. There, the decollement of the BWA ramps 900 feet up-section to the east from a near bedding-parallel detachment low in the upper transition member of the Pierre Shale to a bedding-parallel detachment near the base of the Fox Hills Formation. Repeated sections found in wells east of the decollement ramp demonstrate up to two miles of translation in the system. Secondary faults in the hanging wall of the allochthon include antithetic thrusts bounding pop-up structures and occasional normal faults that almost exclusively overprint the decollement ramp. The hanging wall is also cut by a postulated tear fault separating areas exhibiting different amounts of translation. The western, trailing edge of the decollement shows attenuation in its hanging wall that increases to the west. This part of the decollement either represents a very low-angle breakaway normal fault or a thrust fault cutting slightly down-section in the direction of transport. Past studies perceived a southeast transport direction for the BWA in contrast to the northeast slip directions on nearby Laramide thrusts, a difference used to interpret the allochthon as a gravity slide. However, similar east-west oriented slickenlines on thrusts across the western part of the allochthon and into the neighboring Front Range leave open the possibility the BWA originated as a Laramide thrust sheet. Furthermore, both the BWA and Laramide thrusts in the neighboring Front Range utilized detachments near the top of the Pierre Shale, suggesting a possible common genesis. Given the available data, both the gravity slide and Laramide thrust models provide viable explanations for the BWA.


Geosphere ◽  
2019 ◽  
Vol 15 (5) ◽  
pp. 1577-1597
Author(s):  
Andrew S. Canada ◽  
Elizabeth J. Cassel ◽  
Allen J. McGrew ◽  
M. Elliot Smith ◽  
Daniel F. Stockli ◽  
...  

Abstract Within extended orogens, records that reflect the driving processes and dynamics of early extension are often overprinted by subsequent orogenic collapse. The Copper Mountains of northeastern Nevada preserve an exceptional record of hinterland extensional deformation and high-elevation basin formation, but current geochronology and thermochronology are insufficient to relate this to broader structural trends in the region. This extension occurred concurrent with volcanism commonly attributed to Farallon slab removal. We combine thermochronology of both synextensional hanging-wall strata and footwall rocks to comprehensively evaluate the precise timing and style of this deformation. Specifically, we apply (U-Th)/(He-Pb) double dating of minerals extracted from Eocene–Oligocene Copper Basin strata with multi-mineral (U-Th)/He and 40Ar/39Ar thermochronology of rocks sampled across an ∼20 km transect of the Copper Mountains. We integrate basement and detrital thermochronology records to comprehensively evaluate the timing and rates of hinterland extension and basin sedimentation. Cooling and U-Pb crystallization ages show the Coffeepot Stock, which spans the width of the Copper Mountains, was emplaced at ca. 109–108 Ma, and then cooled through the 40Ar/39Ar muscovite and biotite closure temperatures by ca. 90 Ma, the zircon (U-Th)/He closure temperature between ca. 90 and 70 Ma, and the apatite (U-Th)/He closure temperature between 43 and 40 Ma. Detrital apatite and zircon (U-Th)/(He-Pb) double dating of late Eocene fluvial and lacustrine strata of the Dead Horse Formation and early Oligocene fluvial strata of the Meadow Fork Formation, both deposited in Copper Basin, shows that Early Cretaceous age detrital grains have a cooling history that is analogous to proximal intrusive rocks of the Coffeepot Stock. At ca. 38 Ma, cooling and depositional ages for Copper Basin strata reveal rapid exhumation of proximal source terranes (cooling rate of ∼37 °C/m.y.); in these terranes, 8–12 km of slip along the low-angle Copper Creek normal fault exhumed the Coffeepot Stock in the footwall. Late Eocene–early Oligocene slip along this fault and an upper fault splay, the Meadow Fork fault, created a half graben that accommodated ∼1.4 km of volcaniclastic strata, including ∼20 m of lacustrine strata that preserve the renowned Copper Basin flora. Single-crystal sanidine 40Ar/39Ar geochronology of interbedded tuffs in Copper Basin constrains the onset of rapid exhumation to 38.0 ± 0.9 Ma, indicating that surface-breaching extensional deformation was coincident with intense proximal volcanism. Coarse-grained syndeformational sediments of the Oligocene Meadow Fork Formation were deposited just prior to formation of an extensive regional Oligocene–Miocene unconformity and represent one of the most complete hinterland stratigraphic records of this time. We interpret this history of rapid late Eocene exhumation across the Copper Mountains, coeval volcanism, and subsequent unconformity formation to reflect dynamic and thermal effects associated with Farallon slab removal. The final phase of extension is recorded by late, high-angle normal faults that cut and rotate the early middle Miocene Jarbidge Rhyolite sequence, deposited unconformably in the hanging wall. These results provide an independent record of episodic Paleogene to Miocene exhumation documented in Cordilleran metamorphic core complexes and establish that substantial extension occurred locally in the hinterland prior to province-wide Miocene extensional break-up.


2021 ◽  
Author(s):  
Miriana Chinello ◽  
Michele Fondriest ◽  
Giulio Di Toro

<p>The Italian Central Apennines are one of the most seismically active areas in the Mediterranean (e.g., L’Aquila 2009, Mw 6.3 earthquake). The mainshocks and the aftershocks of these earthquake sequences propagate and often nucleate in fault zones cutting km-thick limestones and dolostones formations. An impressive feature of these faults is the presence, at their footwall, of few meters to hundreds of meters thick damage zones. However, the mechanism of formation of these damage zones and their role during (1) individual seismic ruptures (e.g., rupture arrest), (2) seismic sequences (e.g., aftershock evolution) and (3) seismic cycle (e.g., long term fault zone healing) are unknown. This limitation is also due to the lack of knowledge regarding the distribution, along strike and with depth, of damage with wall rock lithology, geometrical characteristics (fault length, inherited structures, etc.) and kinematic properties (cumulative displacement, strain rate, etc.) of the associated main faults.</p><p>Previous high-resolution field structural surveys were performed on the Vado di Corno Fault Zone, a segment of the ca. 20 km long Campo Imperatore normal fault system, which accommodated ~ 1500 m of vertical displacement (Fondriest et al., 2020). The damage zone was up to 400 m thick and dominated by intensely fractured (1-2 cm spaced joints) dolomitized limestones with the thickest volumes at fault oversteps and where the fault cuts through an older thrust zone. Here we describe two minor faults located in the same area (Central Apennines), but with shorter length along strike. They both strike NNW-SSE and accommodated a vertical displacement of ~300 m.</p><p>The Subequana Valley Fault is about 9 km long and consists of multiple segments disposed in an en-echelon array. The fault juxtaposes pelagic limestones at the footwall and quaternary deposits at the hanging wall. The damage zone is < 25 m  thick  and comprises fractured (1-2 cm spaced joints) limestones beds with decreasing fracture intensity moving away from the master fault. However, the damage zone thickness increases up to ∼100 m in proximity of subsidiary faults striking NNE-SSW. The latter could be reactivated inherited structures.</p><p>The Monte Capo di Serre Fault is about 8 km long and characterized by a sharp ultra-polished master fault surface which cuts locally dolomitized Jurassic platform limestones. The damage zone is up to 120 m thick and cut by 10-20 cm spaced joints, but it reaches an higher fracture intensity where is cut by subsidiary, possibly inherited, faults striking NNE-SSW.</p><p>Based on these preliminary observations, faults with similar displacement show comparable damage zone thicknesses. The most relevant damage zone thickness variations are related to geometrical complexities rather than changes in lithology (platform vs pelagic carbonates).  In particular, the largest values of damage zone thickness and fracture intensity occur at fault overstep or are associated to inherited structures. The latter, by acting as strong or weak barriers (sensu Das and Aki, 1977) during the propagation of seismic ruptures, have a key role in the formation of damage zones and the growth of normal faults.</p>


Author(s):  
Arthur Sylvester ◽  
Robert Smith ◽  
Christopher Hitchcock ◽  
John Byrd

The 55 km-long Teton normal fault at the eastern base of the Teton Range, Wyoming, has one the highest rates of Holocene slip of any fault in the Basin-Range, but it is seismically dormant at the M2 + level and presently lies in the center of a 50 km-long seismic gap (Byrd et al, 1993). Analyses of trenching, fault scarp heights, and fault proftles indicate earthquakes on the Teton fault are non­Poissonian, with from 5 to 10 M >7 earthquakes occurring from 7,900 to 14,000 years ago, but only two such events between 5,000 and 7,900 years ago, and none in the last 5,000 years (Byrd et al., 1994).


2021 ◽  
Author(s):  
Willemijn S.M.T. van Kooten ◽  
Edward R. Sobel ◽  
Cecilia del Papa ◽  
Patricio Payrola ◽  
Alejandro Bande ◽  
...  

<p>The Cretaceous period in NW Argentina is dominated by the formation of the Salta rift basin, an intracontinental rift basin with multiple branches extending from the central Salta-Jujuy High. One of these branches is the ENE-WSW striking Lomas de Olmedo sub-basin, which hosts up to 5 km of syn- and post-rift deposits of the Salta Group, accommodated by substantial throw along SW-NE striking normal faults and subsequent thermal subsidence during the Cretaceous-Paleogene. Early compressive movement in the Eastern Cordillera led to the formation of a foreland basin setting that was further dissected in the Neogene by the uplift of basement-cored ranges. As a consequence, the northwestern part of the Lomas de Olmedo sub-basin was disconnected from the Andean foreland and local depocenters such as the Cianzo basin were formed, whereas the eastern sub-basin area is still part of the Andean foreland. Thus, the majority of the Salta Group to the east is located in the subsurface and has been extensively explored for petroleum, while in northwestern part of the sub-basin, the Salta Group is increasingly deformed and is fully exposed in the km-scale Cianzo syncline of the Hornocal ranges. The SW-NE striking Hornocal fault delimits the Cianzo basin to the south and the Cianzo syncline to the north. During the Cretaceous, it formed the northern margin of the Lomas de Olmedo sub-basin, which is indicated by an increasing thickness of the syn-rift deposits towards the Hornocal fault, as well as a lack of syn-rift deposits on the footwall block. Structural mapping and unpublished apatite fission track (AFT) data show that the Hornocal normal fault was reactivated and inverted during the Miocene. Although structural and sedimentary features of the Cianzo basin infill provide information about the relative timing of fault activity, there is a lack of low-temperature thermochronology. Herein, we aim to constrain the exhumation of the Lomas de Olmedo sub-basin during the Cretaceous rifting phase, as well as the onset and magnitude of fault reactivation in the Miocene. We collected 74 samples for low-temperature thermochronology along two major NW-SE transects in the Cianzo basin and adjacent areas. Of these samples, 59 have been analyzed using apatite and/or zircon (U-Th-Sm)/He thermochronology (AHe, ZHe). Furthermore, 49 samples have been prepared for AFT analysis. The ages are incorporated in thermo-kinematic modelling using Pecube in order to test the robustness of uplift and exhumation scenarios. On the hanging wall block of the N-S striking east-vergent Cianzo thrust north of the Hornocal fault, Jurassic ZHe ages are attributed to pre-Salta Group exhumation. However, associated thrusts to the south show ZHe ages as young as Eocene-Oligocene, which might indicate early post-rift activity along those thrusts. AHe data from the Cianzo syncline show a direct age-elevation relationship with Late Miocene-Pliocene cooling ages, indicating the onset of rapid exhumation along the Hornocal fault in the Miocene. This is consistent with regional data and suggests that pre-existing extensional structures were reactivated during Late Miocene-Pliocene compressive movement within this part of the Central Andes.</p>


2020 ◽  
Author(s):  
Bernhard Grasemann ◽  
David A. Schneider ◽  
Konstantinos Soukis ◽  
Vincent Roche

<p><span lang="EN-US">Tearing in the Hellenic slab below the transition between the Aegean and Anatolian plate is considered to have significantly affected Miocene tectonic and magmatic evolution of the eastern Mediterranean by causing a toroidal flow of asthenosphere and a lateral gradient of extension in the upper plate. Some studies suggest that this lateral gradient is accommodated by a distributed sinistral lithospheric-scale shear zone whereas other studies favor a localized NE-SW striking transfer zone. Recent studies in the northern Dodecanese demonstrate that the transition zone between the Aegean and Anatolian plate is characterized by Miocene extension with a constant NNE-SSW sense of shear accommodating the difference in finite extension rates in the middle-lower crust. Neither localized or distributed strike-slip faults nor rotation of blocks about a vertical axis have been observed.</span></p> <p><span lang="EN-US">In this work we focus on the geology Kalymnos located in the central Dodecanese. Based on our new geological map, three major tectonic units can be distinguished: (i) Low-grade, fossil-rich late Paleozoic marbles, which have been deformed into S-vergent folds and out-of-sequence thrusts. This fold-and-thrust belt is sealed by an up to 200 m thick wildflysch-type deposit consisting of low-grade metamorphic radiolarites and conglomerates with tens of meters-scale marbles and ultramafics blocks. (ii) Above this unit, amphibolite facies schists, quartzites and amphibolites are tectonically juxtaposed along a several meter-thick thrust fault with low-grade ultramylonites and cohesive ultracataclasites/pseudotachylites with top-to-N kinematics. (iii) At highest structural levels, a major cataclastic low-angle normal fault zone localized in Verrucano-type violet slates separates Mesozoic unmetamorphosed limestones in the hanging wall. The sense of shear of the normal fault is top-to-SSW. All units are cut by brittle high-angle normal faults shaping the geomorphology of Kalymnos, which is characterized by three major NNW-SSE trending graben systems.</span></p> <p><span lang="EN-US">New white mica Ar-Ar ages suggests that the middle units represent relics of a Variscan basement, which was thrusted on top of a fold-and-thrust belt during an Eo-Cimmerian event. Zircon (U-Th)/He ages from the Variscan basement are c. 28 Ma, indicating that the lower units were exhumed below the Mesozoic carbonates during the Oligocene-Miocene. Since Miocene extension in the northern Dodecanese records top-to-NNE kinematics, we suggest that back-arc extension in the whole Aegean realm and transition to the Anatolian plate is bivergent, and tearing in the Hellenic slab did not significantly affected the extension pattern in the upper crust.</span></p>


Sign in / Sign up

Export Citation Format

Share Document