scholarly journals Segmentation of the Wassuk Range normal fault system, Nevada (USA): Implications for earthquake rupture and Walker Lane dynamics

Author(s):  
Ben Surpless ◽  
Sarah Thorne

Normal faults are commonly segmented along strike, with segments that localize strain and influence propagation of slip during earthquakes. Although the geometry of segments can be constrained by fault mapping, it is challenging to determine seismically relevant segments along a fault zone. Because slip histories, geometries, and strengths of linkages between normal fault segments fundamentally control the propagation of rupture during earthquakes, and differences in segment slip rates result in differential uplift of adjacent footwalls, we used along-strike changes in footwall morphology to detect fault segments and the relative strength of the mechanical links between them. We applied a new geomorphic analysis protocol to the Wassuk Range fault, Nevada, within the actively deforming Walker Lane. The protocol examines characteristics of footwall morphology, including range-crest continuity, bedrock-channel long profiles, catchment area variability, and footwall relief, to detect changes in strike-parallel footwall characteristics. Results revealed six domains with significant differences in morphology that we used to identify seismically relevant fault segments and segment boundaries. We integrated our results with previous studies to determine relative strength of links between the six segments, informing seismic hazard assessment. When combined with recent geodetic studies, our results have implications for the future evolution of the Walker Lane, suggesting changes in the accommodation of strain across the region. Our analysis demonstrates the power of this method to efficiently detect along-strike changes in footwall morphology related to fault behavior, permitting future researchers to perform reconnaissance assessment of normal fault segmentation worldwide.

Author(s):  
Thomas Chartier ◽  
Oona Scotti ◽  
Hélène Lyon-Caen ◽  
Aurélien Boiselet

Abstract. Modelling the seismic potential of active faults is a fundamental step of probabilistic seismic hazard assessment (PSHA). An accurate estimation of the rate of earthquakes on the faults is necessary in order to obtain the probability of exceedance of a given ground motion. Most PSHA studies consider faults as independent structures and neglect the possibility of multiple faults or fault segments rupturing simultaneously (Fault to Fault -FtF- ruptures). The latest Californian model (UCERF-3) takes into account this possibility by considering a system level approach rather than an individual fault level approach using the geological , seismological and geodetical information to invert the earthquake rates. In many places of the world seismological and geodetical information long fault networks are often not well constrained. There is therefore a need to propose a methodology relying only on geological information to compute earthquake rate of the faults in the network. In this methodology, similarly to UCERF-3, a simple distance criteria is used to define FtF ruptures and consider single faults or FtF ruptures as an aleatory uncertainty. Rates of earthquakes on faults are then computed following two constraints: the magnitude frequency distribution (MFD) of earthquakes in the fault system as a whole must follow an imposed shape and the rate of earthquakes on each fault is determined by the specific slip-rate of each segment depending on the possible FtF ruptures. The modelled earthquake rates are then confronted to the available independent data (geodetical, seismological and paleoseismological data) in order to weigh different hypothesis explored in a logic tree. The methodology is tested on the Western Corinth Rift, Greece (WCR) where recent advancements have been made in the understanding of the geological slip rates of the complex network of normal faults which are accommodating the ~15 mm/yr North-South extension. Modelling results show that geological, seismological extension rates and paleoseismological rates of earthquakes cannot be reconciled with only single fault rupture scenarios and require hypothesising a large spectrum of possible FtF rupture sets. Furthermore, in order to fit the imposed regional Gutenberg-Richter MFD target, some of the slip along certain faults needs to be accommodated either with interseismic creep or as post-seismic processes. Furthermore, individual fault’s MFDs differ depending on the position of each fault in the system and the possible FtF ruptures associated with the fault. Finally, a comparison of modelled earthquake rupture rates with those deduced from the regional and local earthquake catalogue statistics and local paleosismological data indicates a better fit with the FtF rupture set constructed with a distance criteria based on a 5 km rather than 3 km, suggesting, a high connectivity of faults in the WCR fault system.


Geosites ◽  
2019 ◽  
Vol 1 ◽  
pp. 1-12
Author(s):  
Robert Biek

The Hurricane fault is the big earthquake fault in southwestern Utah. It stretches at least 155 miles (250 km) from south of the Grand Canyon northward to Cedar City and is capable of producing damaging earthquakes of about magnitude 7.0. The Hurricane fault is a “normal” fault, a type of fault that forms during extension of the earth’s crust, where one side of the fault moves down relative to the other side. In this case, the down-dropped side (the hanging wall) is west of the fault; the upthrown side (the footwall) lies to the east. Like most long normal faults, the Hurricane fault is composed of discrete segments that tend to rupture independently (figure 1). The fault lies at or near the base of the Hurricane Cliffs, which form an impressive, little-eroded fault scarp several hundred feet high. Conspicuous, west-tilted, faulted slivers of mostly Triassic and Jurassic red beds are locally exposed at the base of the cliffs, and contrast strongly with gray Permian carbonates exposed in the cliffs themselves. Several Pleistocene basaltic lava flows flowed across and are now offset by the fault zone, dramatically recording long-term slip rates. Should you make the mistake of pronouncing the name “Hurricane” as one would when describing a mighty storm on the East Coast, you should stand to be corrected, for locals pronounce it as “Hurricun” even though pioneers named the town after ferocious winds common to the local area.


2021 ◽  
Author(s):  
Miriana Chinello ◽  
Michele Fondriest ◽  
Giulio Di Toro

<p>The Italian Central Apennines are one of the most seismically active areas in the Mediterranean (e.g., L’Aquila 2009, Mw 6.3 earthquake). The mainshocks and the aftershocks of these earthquake sequences propagate and often nucleate in fault zones cutting km-thick limestones and dolostones formations. An impressive feature of these faults is the presence, at their footwall, of few meters to hundreds of meters thick damage zones. However, the mechanism of formation of these damage zones and their role during (1) individual seismic ruptures (e.g., rupture arrest), (2) seismic sequences (e.g., aftershock evolution) and (3) seismic cycle (e.g., long term fault zone healing) are unknown. This limitation is also due to the lack of knowledge regarding the distribution, along strike and with depth, of damage with wall rock lithology, geometrical characteristics (fault length, inherited structures, etc.) and kinematic properties (cumulative displacement, strain rate, etc.) of the associated main faults.</p><p>Previous high-resolution field structural surveys were performed on the Vado di Corno Fault Zone, a segment of the ca. 20 km long Campo Imperatore normal fault system, which accommodated ~ 1500 m of vertical displacement (Fondriest et al., 2020). The damage zone was up to 400 m thick and dominated by intensely fractured (1-2 cm spaced joints) dolomitized limestones with the thickest volumes at fault oversteps and where the fault cuts through an older thrust zone. Here we describe two minor faults located in the same area (Central Apennines), but with shorter length along strike. They both strike NNW-SSE and accommodated a vertical displacement of ~300 m.</p><p>The Subequana Valley Fault is about 9 km long and consists of multiple segments disposed in an en-echelon array. The fault juxtaposes pelagic limestones at the footwall and quaternary deposits at the hanging wall. The damage zone is < 25 m  thick  and comprises fractured (1-2 cm spaced joints) limestones beds with decreasing fracture intensity moving away from the master fault. However, the damage zone thickness increases up to ∼100 m in proximity of subsidiary faults striking NNE-SSW. The latter could be reactivated inherited structures.</p><p>The Monte Capo di Serre Fault is about 8 km long and characterized by a sharp ultra-polished master fault surface which cuts locally dolomitized Jurassic platform limestones. The damage zone is up to 120 m thick and cut by 10-20 cm spaced joints, but it reaches an higher fracture intensity where is cut by subsidiary, possibly inherited, faults striking NNE-SSW.</p><p>Based on these preliminary observations, faults with similar displacement show comparable damage zone thicknesses. The most relevant damage zone thickness variations are related to geometrical complexities rather than changes in lithology (platform vs pelagic carbonates).  In particular, the largest values of damage zone thickness and fracture intensity occur at fault overstep or are associated to inherited structures. The latter, by acting as strong or weak barriers (sensu Das and Aki, 1977) during the propagation of seismic ruptures, have a key role in the formation of damage zones and the growth of normal faults.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 405
Author(s):  
Claudia Pirrotta ◽  
Graziella Barberi ◽  
Giovanni Barreca ◽  
Fabio Brighenti ◽  
Francesco Carnemolla ◽  
...  

A multidisciplinary work integrating structural, geodetic and seismological data was performed in the Catanzaro Trough (central Calabria, Italy) to define the seismotectonic setting of this area. The Catanzaro Trough is a structural depression transversal to the Calabrian Arc, lying in-between two longitudinal grabens: the Crati Basin to the north and the Mesima Basin to the south. The investigated area experienced some of the strongest historical earthquakes of Italy, whose seismogenic sources are still not well defined. We investigated and mapped the major WSW–ENE to WNW–ESE trending normal-oblique Lamezia-Catanzaro Fault System, bounding to the north the Catanzaro Trough. Morphotectonic data reveal that some fault segments have recently been reactivated since they have displaced upper Pleistocene deposits showing typical geomorphic features associated with active normal fault scarps such as triangular and trapezoidal facets, and displaced alluvial fans. The analysis of instrumental seismicity indicates that some clusters of earthquakes have nucleated on the Lamezia-Catanzaro Fault System. In addition, focal mechanisms indicate the prevalence of left-lateral kinematics on E–W roughly oriented fault plains. GPS data confirm that slow left-lateral motion occurs along this fault system. Minor north-dipping normal faults were also mapped in the southern side of the Catanzaro Trough. They show eroded fault scarps along which weak seismic activity and negligible geodetic motion occur. Our study highlights that the Catanzaro Trough is a poliphased Plio-Quaternary extensional basin developed early as a half-graben in the frame of the tear-faulting occurring at the northern edge of the subducting Ionian slab. In this context, the strike-slip motion contributes to the longitudinal segmentation of the Calabrian Arc. In addition, the high number of seismic events evidenced by the instrumental seismicity, the macroseismic intensity distribution of the historical earthquakes and the scaling laws relating to earthquakes and seismogenic faults support the hypothesis that the Lamezia-Catanzaro Fault System may have been responsible for the historical earthquakes since it is capable of triggering earthquakes with magnitude up to 6.9.


2020 ◽  
Vol 133 (1-2) ◽  
pp. 307-324
Author(s):  
Zachery M. Lifton ◽  
Jeffrey Lee ◽  
Kurt L. Frankel ◽  
Andrew V. Newman ◽  
Jeffrey M. Schroeder

Abstract The White Mountains fault zone in eastern California is a major fault system that accommodates right-lateral shear across the southern Walker Lane. We combined field geomorphic mapping and interpretation of high-resolution airborne light detection and ranging (LiDAR) digital elevation models with 10Be cosmogenic nuclide exposure ages to calculate new late Pleistocene and Holocene right-lateral slip rates on the White Mountains fault zone. Alluvial fans were found to have ages of 46.6 + 11.0/–10.0 ka and 7.3 + 4.2/–4.5 ka, with right-lateral displacements of 65 ± 13 m and 14 ± 5 m, respectively, yielding a minimum average slip rate of 1.4 ± 0.3 mm/yr. These new slip rates help to resolve the kinematics of fault slip across this part of the complex Pacific–North American plate boundary. Our results suggest that late Pleistocene slip rates on the White Mountains fault zone were significantly faster than previously reported. These results also help to reconcile a portion of the observed discrepancy between modern geodetic strain rates and known late Pleistocene slip rates in the southern Walker Lane. The total middle to late Pleistocene slip rate from the southern Walker Lane near 37.5°N was 7.9 + 1.3/–0.6 mm/yr, ∼75% of the observed modern geodetic rate.


Geology ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 66-70
Author(s):  
Jim Tesson ◽  
Lucilla Benedetti ◽  
Vincent Godard ◽  
Catherine Novaes ◽  
Jules Fleury ◽  
...  

Abstract Facets are major topographic features built over several 100 k.y. above active normal faults. Their development integrates cumulative displacements over a longer time frame than many other geomorphological markers, and they are widespread in diverse extensional settings. We have determined the 36Cl cosmogenic nuclide concentration on limestone faceted spurs at four sites in the Central Apennines (Italy), representing variable facet height (100–400 m). The 36Cl concentration profiles show nearly constant values over the height of the facet, suggesting the facet slope has reached a steady-state equilibrium for 36Cl production. We model the 36Cl buildup on a facet based on a gradual exposure of the sample resulting from fault slip and denudation. Data inversion with this forward model yields accurate constraints on fault slip rates over the past 20–200 k.y., which are in agreement with the long-term rate independently determined on some of those faults over the past 1 m.y. 36Cl measurements on faceted spurs can therefore constrain fault slip rate over time spans as long as 200 k.y., a time period presently undersampled in most morphotectonic studies.


2021 ◽  
Author(s):  
◽  
Hamish Cameron

<p>This study investigates the evolution (from initiation to inactivity) of a normal fault system in proximity to active petroleum systems within the Taranaki Basin, New Zealand. The aim of this research is to understand the evolution, interaction, and in some cases, death of normal faults in a region undergoing progressive regional extension. This research provides insight into the geometry, development, and displacement history of new and reactivated normal fault evolution through interpretation of industry standard seismic reflection data at high spatial and temporal resolution. Insight into normal fault evolution provides information on subsidence rates and potential hydrocarbon migration pathways.  Twelve time horizons between 1.2 and 35 Ma have been mapped throughout 1670 square kilometres of the Parihaka and Toro 3D seismic reflection surveys. Fault displacement analysis and backstripping have been used to determine the main phases of fault activity, fault growth patterns, and maximum Displacement/Length ratios. The timing, geometry, and displacement patterns for 110 normal faults with displacements >20 m have been interpreted and analysed using Paradigm SeisEarth and TrapTester 6 seismic interpretation and fault analysis software platforms.  Normal faults within the Parihaka and Toro 3D seismic surveys began developing at ˜11 Ma, with the largest faults accruing up to 1500 m of displacement in <10 Myr (mean throw displacement rate of 0.15mm/yr). Approximately 50% of the 110 mapped faults are associated with pre-existing normal faults and have typical cumulative displacements of ˜20 – 1000 m, with strike parallel lengths of <1 – 23 km. In contrast, new faults have typically greater displacements of 20 – 1400 m, and are generally longer with, with strike parallel lengths of ˜1 – 33 km.   New faults were the first faults within the system to become inactive when strain rates decreased from 0.06 – 0.03 between 3.6 and 3.0 Ma. Eight of the largest faults with > 1000 m cumulative displacement reach the seafloor and are potentially active at present day. An earthquake on one of these faults could be expected to produce MW 2.2 based on the maximum strike-parallel length of the fault plane.</p>


Sign in / Sign up

Export Citation Format

Share Document