scholarly journals Delineation of spatial variation of shear wave velocity with high-frequency Rayleigh waves in Anchorage, Alaska

2000 ◽  
Vol 143 (2) ◽  
pp. 365-375 ◽  
Author(s):  
U. Dutta ◽  
N. Biswas ◽  
A. Martirosyan ◽  
S. Nath ◽  
M. Dravinski ◽  
...  
1992 ◽  
Vol 29 (4) ◽  
pp. 558-568 ◽  
Author(s):  
K. O. Addo ◽  
P. K. Robertson

A modified version of the spectral analysis of surface waves (SASW) equipment and analysis procedure has been developed to determine in situ shear-wave velocity variation with depth from the ground surface. A microcomputer has been programmed to acquire waveform data and perform the relevant spectral analyses that were previously done by signal analyzers. Experimental dispersion for Rayleigh waves is now obtainable at a site and inverted with a fast algorithm for dispersion computation. Matching experimental and theoretical dispersion curves has been automated in an optimization routine that does not require intermittent operator intervention or experience in dispersion computation. Shear-wave velocity profiles measured by this procedure are compared with results from independent seismic cone penetration tests for selected sites in western Canada. Key words : surface wave, dispersion, inversion, optimization, shear-wave velocity.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. E183-E190 ◽  
Author(s):  
Xiao-Ming Tang ◽  
Douglas J. Patterson

We have developed a novel constrained inversion method for estimating a radial shear-wave velocity profile away from the wellbore using dipole acoustic logging data and have analyzed the effect of the radial velocity changes on dipole-flexural-wave dispersion characteristics. The inversion of the dispersion data to estimate the radial changes is inherently a nonunique problem because changing the degree of variation or the radial size of the variation zone can produce similar wave-dispersion characteristics. Nonuniqueness can be solved by developing a constrained inversion method. This is done by constraining the high-frequency portion of the model dispersion curve with another curve calculated using the near-borehole velocity. The constraint condition is based on the physical principle that a high-frequency dipole wave has a shallow penetration depth and is therefore sensitive to the near-borehole shear-wave velocity. We have validated the result of the constrained inversion with synthetic data testing. Combining the new inversion method with four-component crossed-dipole anisotropy processing obtains shear radial profiles in fast and slow shear polarization directions. In a sandstone formation, the fast and slow shear-wave profiles show substantial differences caused by the near-borehole stress field, demonstrating the ability of the technique to obtain radial and azimuthal geomechanical property changes near the wellbore.


2020 ◽  
Vol 39 (9) ◽  
pp. 646-653 ◽  
Author(s):  
Siyuan Yuan ◽  
Ariel Lellouch ◽  
Robert G. Clapp ◽  
Biondo Biondi

Due to the broadband nature of distributed acoustic sensing (DAS) measurement, a roadside section of the Stanford DAS-2 array can record seismic signals from various sources. For example, it measures the earth's quasistatic deformation caused by the weight of cars (less than 0.8 Hz) as well as Rayleigh waves induced by earthquakes (less than 3 Hz) and by dynamic car-road interactions (3–20 Hz). We directly utilize the excited surface waves for shallow shear-wave velocity inversion. Rayleigh waves induced by passing cars have a consistent fundamental mode and a noisier first mode. By stacking dispersion images of 33 passing cars, we obtain stable dispersion images. The frequency range of the fundamental mode can be extended by adding the low-frequency earthquake-induced Rayleigh waves. Due to the extended frequency range, we can achieve better depth coverage and resolution for shear-wave velocity inversion. To assure clear separation from Love waves and to align apparent and true phase velocities, we choose an earthquake that is approximately in line with the array. The inverted models match those obtained by a conventional geophone survey, performed using active sources by a geotechnical service company contracted by Stanford University, from the surface to about 50 m. To automate the VS inversion process, we introduce a new objective function that avoids manual dispersion curve picking. We construct a 2D VS profile by performing independent 1D inversions at multiple locations along the fiber. From the low-frequency quasistatic deformation recordings, we also invert for a single Poisson's ratio at each location along the fiber. We observe spatial heterogeneity of both VS and Poisson's ratio profiles. Our approach is less expensive than ambient field interferometry, and reliable estimates can be obtained more frequently because no lengthy crosscorrelations are required.


Sign in / Sign up

Export Citation Format

Share Document