Impacts of changing climate and atmospheric deposition on N and S drainage losses from a forested watershed of the Adirondack Mountains, New York State

2003 ◽  
Vol 9 (11) ◽  
pp. 1602-1619 ◽  
Author(s):  
Ji-Hyung Park ◽  
Myron J. Mitchell ◽  
Patrick J. McHale ◽  
Sheila F. Christopher ◽  
Tilden P. Meyers
1985 ◽  
Vol 22 (2) ◽  
pp. 141-153 ◽  
Author(s):  
S. L. Klemperer ◽  
L. D. Brown ◽  
J. E. Oliver ◽  
C. J. Ando ◽  
B. L. Czuchra ◽  
...  

COCORP deep seismic reflection profiling in the Adirondack Mountains of northern New York State has revealed a prominent zone of layered reflectors in the lower crust of the east-central Adirondacks. The strong, layered reflectors (here termed the Tahawus complex) occur between 18 and 26 km depth, beneath the sparsely reflective, granulite-grade, surface terrane, which has been uplifted from depths greater than 20 km. The Tahawus complex apparently represents layered rocks of some type in the lower crust of the Adirondacks. Possibilities include gneissic layering, cumulate igneous layering, a layered sill complex, and underthrust sedimentary strata, The Tahawus complex may be spatially coincident with a previously detected, high-conductivity zone in the lower crust, suggesting that either unusual mineralogies or interstitial electrolytes are present in the Tahawus complex. In contrast to layered reflections discovered in the lower crust of the east-central Adirondacks and southeast of the Adirondacks, cross-cutting and discontinuous reflections are recorded from the upper crust on all the COCORP Adirondack lines, including lines in both the Adirondack Highlands and Lowlands. Available three-dimensional control suggests that reflections in the upper crust of the central Adirondacks are parallel to, and hence may be related to, the folded gneisses mapped at the surface. Shallow events are also observed on a COCORP profile close to the epicenter of the 7 October 1983 magnitude 5.2 earthquake in the central Adirondacks, but their relation to the earthquake is uncertain.


Ecotoxicology ◽  
2020 ◽  
Vol 29 (10) ◽  
pp. 1565-1589
Author(s):  
D. C. Evers ◽  
A. K. Sauer ◽  
D. A. Burns ◽  
N. S. Fisher ◽  
D. C. Bertok ◽  
...  

AbstractMercury (Hg) pollution is an environmental problem that adversely affects human and ecosystem health at local, regional, and global scales—including within New York State. More than two-thirds of the Hg currently released to the environment originates, either directly or indirectly, from human activities. Since the early 1800s, global atmospheric Hg concentrations have increased by three- to eight-fold over natural levels. In the U.S., atmospheric emissions and point-source releases to waterways increased following industrialization into the mid-1980s. Since then, water discharges have largely been curtailed. As a result, Hg emissions, atmospheric concentrations, and deposition over the past few decades have declined across the eastern U.S. Despite these decreases, Hg pollution persists. To inform policy efforts and to advance public understanding, the New York State Energy Research and Development Authority (NYSERDA) sponsored a scientific synthesis of information on Hg in New York State. This effort includes 23 papers focused on Hg in atmospheric deposition, water, fish, and wildlife published in Ecotoxicology. New York State experiences Hg contamination largely due to atmospheric deposition. Some landscapes are inherently sensitive to Hg inputs driven by the transport of inorganic Hg to zones of methylation, the conversion of inorganic Hg to methylmercury, and the bioaccumulation and biomagnification along food webs. Mercury concentrations exceed human and ecological risk thresholds in many areas of New York State, particularly the Adirondacks, Catskills, and parts of Long Island. Mercury concentrations in some biota have declined in the Eastern Great Lakes Lowlands and the Northeastern Highlands over the last four decades, concurrent with decreases in water releases and air emissions from regional and U.S. sources. However, widespread changes have not occurred in other ecoregions of New York State. While the timing and magnitude of the response of Hg levels in biota varies, policies expected to further diminish Hg emissions should continue to decrease Hg concentrations in food webs, yielding benefits to the fish, wildlife, and people of New York State. Anticipated improvements in the Hg status of aquatic ecosystems are likely to be greatest for inland surface waters and should be roughly proportional to declines in atmospheric Hg deposition. Efforts that advance recovery from Hg pollution in recent years have yielded significant progress, but Hg remains a pollutant of concern. Indeed, due to this extensive compilation of Hg observations in biota, it appears that the extent and intensity of the contamination on the New York landscape and waterscape is greater than previously recognized. Understanding the extent of Hg contamination and recovery following decreases in atmospheric Hg deposition will require further study, underscoring the need to continue existing monitoring efforts.


Sign in / Sign up

Export Citation Format

Share Document