scholarly journals Characterization of an extracellular enzyme system produced by Micromonospora chalcea with lytic activity on yeast cells

2000 ◽  
Vol 88 (6) ◽  
pp. 961-967 ◽  
Author(s):  
M. Gacto ◽  
J. Vicente-Soler ◽  
J. Cansado ◽  
T.G. Villa
2018 ◽  
Vol 115 (17) ◽  
pp. E3969-E3977 ◽  
Author(s):  
Sasikumar Rajoo ◽  
Pascal Vallotton ◽  
Evgeny Onischenko ◽  
Karsten Weis

The nuclear pore complex (NPC) is an eightfold symmetrical channel providing selective transport of biomolecules across the nuclear envelope. Each NPC consists of ∼30 different nuclear pore proteins (Nups) all present in multiple copies per NPC. Significant progress has recently been made in the characterization of the vertebrate NPC structure. However, because of the estimated size differences between the vertebrate and yeast NPC, it has been unclear whether the NPC architecture is conserved between species. Here, we have developed a quantitative image analysis pipeline, termed nuclear rim intensity measurement (NuRIM), to precisely determine copy numbers for almost all Nups within native NPCs of budding yeast cells. Our analysis demonstrates that the majority of yeast Nups are present at most in 16 copies per NPC. This reveals a dramatic difference to the stoichiometry determined for the human NPC, suggesting that despite a high degree of individual Nup conservation, the yeast and human NPC architecture is significantly different. Furthermore, using NuRIM, we examined the effects of mutations on NPC stoichiometry. We demonstrate for two paralog pairs of key scaffold Nups, Nup170/Nup157 and Nup192/Nup188, that their altered expression leads to significant changes in the NPC stoichiometry inducing either voids in the NPC structure or substitution of one paralog by the other. Thus, our results not only provide accurate stoichiometry information for the intact yeast NPC but also reveal an intriguing compositional plasticity of the NPC architecture, which may explain how differences in NPC composition could arise in the course of evolution.


1983 ◽  
Vol 258 (19) ◽  
pp. 11430-11433 ◽  
Author(s):  
C Edelstein ◽  
J I Gordon ◽  
K Toscas ◽  
H F Sims ◽  
A W Strauss ◽  
...  

Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 487-499 ◽  
Author(s):  
Sophie Zuber ◽  
Michael J Hynes ◽  
Alex Andrianopoulos

AbstractThe opportunistic human pathogen Penicillium marneffei exhibits a temperature-dependent dimorphic switch. At 25°, multinucleate, septate hyphae that can undergo differentiation to produce asexual spores (conidia) are produced. At 37° hyphae undergo arthroconidiation to produce uninucleate yeast cells that divide by fission. This work describes the cloning of the P. marneffei gasC gene encoding a G-protein α-subunit that shows high homology to members of the class III fungal Gα-subunits. Characterization of a ΔgasC mutant and strains carrying a dominant-activating gasCG45R or a dominant-interfering gasCG207R allele show that GasC is a crucial regulator of germination. A ΔgasC mutant is severely delayed in germination, whereas strains carrying a dominant-activating gasCG45R allele show a significantly accelerated germination rate. Additionally, GasC signaling positively affects the production of the red pigment by P. marneffei at 25° and negatively affects the onset of conidiation and the conidial yield, showing that GasC function overlaps with functions of the previously described Gα-subunit GasA. In contrast to the S. cerevisiae ortholog Gpa2, our data indicate that GasC is not involved in carbon or nitrogen source sensing and plays no major role in either hyphal or yeast growth or in the switch between these two forms.


Sign in / Sign up

Export Citation Format

Share Document