opportunistic human pathogen
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 95)

H-INDEX

42
(FIVE YEARS 7)

mSphere ◽  
2022 ◽  
Author(s):  
E. M. Keizer ◽  
I. D. Valdes ◽  
B. L. McCann ◽  
E. M. Bignell ◽  
H. A. B. Wösten ◽  
...  

Opportunistic pathogens like Aspergillus fumigatus have strategies to protect themselves against reactive oxygen species like hydrogen peroxides and superoxides that are produced by immune cells. DHN-melanin is the green pigment on conidia of Aspergillus fumigatus and more than 2 decades ago was reported to protect conidia against hydrogen peroxide.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0259386
Author(s):  
Devon W. Kavanaugh ◽  
Constance Porrini ◽  
Rozenn Dervyn ◽  
Nalini Ramarao

Bacillus cereus is a spore forming bacteria recognized among the leading agents responsible for foodborne outbreaks in Europe. B. cereus is also gaining notoriety as an opportunistic human pathogen inducing local and systemic infections. The real incidence of such infection is likely underestimated and information on genetic and phenotypic characteristics of the incriminated strains is generally scarce. We have recently analyzed a large strain collection of varying pathogenic potential. Screening for biomarkers to differentiate among clinical and non-clinical strains, a gene encoding an alcohol dehydrogenase-like protein was identified among the leading candidates. This family of proteins has been demonstrated to be involved in the virulence of several bacterial species. The relevant gene was knocked out to elucidate its function with regards to resistance to host innate immune response, both in vitro and in vivo. Our results demonstrate that the adhB gene plays a significant role in resistance to nitric oxide and oxidative stress in vitro, as well as its pathogenic ability with regards to in vivo toxicity. These properties may explain the pathogenic potential of strains carrying this newly identified virulence factor.


Microbiology ◽  
2021 ◽  
Vol 167 (12) ◽  
Author(s):  
Yue Yuan On ◽  
Martin Welch

Over the last 70 years, we’ve all gotten used to an Escherichia coli -centric view of the microbial world. However, genomics, as well as the development of improved tools for genetic manipulation in other species, is showing us that other bugs do things differently, and that we cannot simply extrapolate from E. coli to everything else. A particularly good example of this is encountered when considering the mechanism(s) involved in DNA mismatch repair by the opportunistic human pathogen, Pseudomonas aeruginosa (PA). This is a particularly relevant phenotype to examine in PA, since defects in the mismatch repair (MMR) machinery often give rise to the property of hypermutability. This, in turn, is linked with the vertical acquisition of important pathoadaptive traits in the organism, such as antimicrobial resistance. But it turns out that PA lacks some key genes associated with MMR in E. coli , and a closer inspection of what is known (or can be inferred) about the MMR enzymology reveals profound differences compared with other, well-characterized organisms. Here, we review these differences and comment on their biological implications.


2021 ◽  
Vol 7 (11) ◽  
pp. 957
Author(s):  
Supakorn Nundaeng ◽  
Nakarin Suwannarach ◽  
Savitree Limtong ◽  
Surapong Khuna ◽  
Jaturong Kumla ◽  
...  

Ascomycetous yeast species in the genus Wickerhamomyces (Saccharomycetales, Wickerhamomycetaceae) are isolated from various habitats and distributed throughout the world. Prior to this study, 35 species had been validly published and accepted into this genus. Beneficially, Wickerhamomyces species have been used in a number of biotechnologically applications of environment, food, beverage industries, biofuel, medicine and agriculture. However, in some studies, Wickerhamomyces species have been identified as an opportunistic human pathogen. Through an overview of diversity, taxonomy and recently published literature, we have updated a brief review of Wickerhamomyces. Moreover, two new Wickerhamomyces species were isolated from the soil samples of Assam tea (Camellia sinensis var. assamica) that were collected from plantations in northern Thailand. Herein, we have identified these species as W. lannaensis and W. nanensis. The identification of these species was based on phenotypic (morphological, biochemical and physiological characteristics) and molecular analyses. Phylogenetic analyses of a combination of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit (LSU) of ribosomal DNA genes support that W. lannaensis and W. nanensis are distinct from other species within the genus Wickerhamomyces. A full description, illustrations and a phylogenetic tree showing the position of both new species have been provided. Accordingly, a new combination species, W. myanmarensis has been proposed based on the phylogenetic results. A new key for species identification is provided.


Author(s):  
R. Shruthi Devi ◽  
P. Sankar Ganesh ◽  
A. S. Smiline Girija ◽  
J. Vijayashree Priyadharshini

Background: Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen that mainly infects immunocompromised individuals and patients with urinary tract infection and chronic infections of the respiratory pathways, including cystic fibrosis. Many quorum sensing (QS) controlled components such as bio surfactants and swarming motilities play an important role in the establishment of biofilms. Targeting these factors through anti-QS strategies prevent biofilm formation and treating infections. Coccinia indica commonly called little gourd is used to treat diabetes, wound, burn infections and has antioxidant, antibacterial and antitussive properties. Methods: The methanolic fruit extract of C. indica was prepared and screened for anti-QS and anti-biofilm formation activity. Pyocyanin inhibition, rhamnolipid, crystal violet staining assay tests was performed and the extract was observed under fluorescent microscope. Results: The results obtained are as follows - the fruit extract inhibits the pyocyanin at 58.13% and 42.27% at 0.5 mg/ml and 1.0 mg/ml, biofilm at 69.86% and 49.06% at 0.5 mg/ml and 1.0 mg/ml, inhibits rhamnolipid assay and under fluorescent microscope it is seen scattered whereas control produce biofilm matrix like appearance. Conclusion: Since less study has been made on the quorum sensing and biofilm activity of C.indica our study aimed to fulfil it and it was found that it exhibits good biofilm formation and thus can be used for treating infections.


Author(s):  
Josephine Joy Hubloher ◽  
Kim Schabacker ◽  
Volker Müller ◽  
Beate Averhoff

The opportunistic human pathogen Acinetobacter baumannii has become one of the leading causes of nosocomial infections around the world due to the increasing prevalence of multidrug-resistant strains and their optimal adaptation to clinical environments and the human host. Recently, it was found that CsrA, a global mRNA binding posttranscriptional regulator, plays a role in osmotic stress adaptation, virulence, and growth on amino acids of A. baumannii AB09-003 and 17961.


Author(s):  
Viduthalai Rasheedkhan Regina ◽  
Parisa Noorian ◽  
Clarence Sim Bo Wen ◽  
Florentin Constancias ◽  
Eganathan Kaliyamoorthy ◽  
...  

Vibrio vulnificus is an opportunistic human pathogen and autochthonous inhabitant of coastal marine environments, where the bacterium is under constant predation by heterotrophic protists or protozoans. As a result of this selection pressure, genetic variants with anti-predation mechanisms are selected for and persist in the environment. Such natural variants may also be pathogenic to animal or human hosts, making it important to understand these defence mechanisms. To identify anti-predator strategies, thirteen V. vulnificus strains of different genotypes isolated from diverse environments were exposed to predation by the ciliated protozoan, Tetrahymena pyriformis , and only strain ENV1 was resistant to predation. Further investigation of the cell-free supernatant showed that ENV1 acidifies the environment by the excretion of organic acids, which is toxic to T. pyriformis . As this predation resistance was dependent on the availability of iron, transcriptomes of V. vulnificus in iron-replete and iron-deplete conditions were compared. This analysis revealed that ENV1 ferments pyruvate and the resultant acetyl-CoA leads to acetate synthesis under aerobic conditions, a hallmark of overflow metabolism. The anaerobic respiration global regulator, arcA , was upregulated when iron was available. An Δ arcA deletion mutant of ENV1 accumulated less acetate and importantly, was sensitive to grazing by T. pyriformis . Based on the transcriptome response and quantification of metabolites, we conclude that ENV1 has adapted to overflow metabolism and has lost a control switch that shifts metabolism from acetate excretion to acetate assimilation, enabling it to excrete acetate continuously. We show that overflow metabolism and the acetate switch contribute to prey-predator interactions. Importance Bacteria in the environment, including Vibrio spp., interact with protozoan predators. To defend against predation, bacteria evolve anti-predator mechanisms ranging from changing morphology, biofilm formation and secretion of toxins or virulence factors. Some of these adaptations may result in strains that are pathogenic to humans. Therefore, it is important to study predator defence strategies of environmental bacteria. V. vulnificus thrives in coastal waters and infects humans. Very little is know about the defence mechanisms V. vulnificus expresses against predation. Here we show that a V. vulnificus strain (ENV1) has rewired the central carbon metabolism enabling the production of excess organic acid that is toxic to the protozoan predator, T. pyriformis . This is a previously unknown mechanism of predation defence that protects against protozoan predators.


2021 ◽  
Vol 10 (39) ◽  
Author(s):  
Henry Marcel Zalona Fernandes ◽  
Emilyn Costa Conceição ◽  
Sandro Patroca da Silva ◽  
Edson Machado ◽  
Maria Carolina Sisco ◽  
...  

Alcaligenes faecalis is a Gram-negative rod that is ubiquitous in the environment and is an opportunistic human pathogen. Here, we report the whole-genome sequencing analysis of A. faecalis HZ01, which presents mycobacterial growth inhibitory activity and was isolated from a contaminated culture of Mycobacterium chubuense ATCC 27278.


Author(s):  
Stéphane Pont ◽  
Anne-Béatrice Blanc-Potard

The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected patients with cystic fibrosis (CF). Considering the intrinsic and acquired resistance of P. aeruginosa to currently used antibiotics, new therapeutic strategies against this pathogen are urgently needed. Whereas virulence factors of P. aeruginosa are well characterized, the interplay between P. aeruginosa and the innate immune response during infection remains unclear. Zebrafish embryo is now firmly established as a potent vertebrate model for the study of infectious human diseases, due to strong similarities of its innate immune system with that of humans and the unprecedented possibilities of non-invasive real-time imaging. This model has been successfully developed to investigate the contribution of bacterial and host factors involved in P. aeruginosa pathogenesis, as well as rapidly assess the efficacy of anti-Pseudomonas molecules. Importantly, zebrafish embryo appears as the state-of-the-art model to address in vivo the contribution of innate immunity in the outcome of P. aeruginosa infection. Of interest, is the finding that the zebrafish encodes a CFTR channel closely related to human CFTR, which allowed to develop a model to address P. aeruginosa pathogenesis, innate immune response, and treatment evaluation in a CF context.


Author(s):  
Thibault Bourdin ◽  
Alizée Monnier ◽  
Marie-Ève Benoit ◽  
Emilie Bédard ◽  
Michèle Prévost ◽  
...  

Molecular typing methods are used to characterize the relatedness between bacterial isolates involved in infections. These approaches rely mostly on discrete loci or whole genome sequences (WGS) analyses of pure cultures. On the other hand, their application to environmental DNA profiling to evaluate epidemiological relatedness amongst patients and environments has received less attention. We developed a specific, high-throughput short sequence typing (HiSST) method for the opportunistic human pathogen Serratia marcescens . Genes displaying the highest polymorphism were retrieved from the core genome of 60 S. marcescens strains. Bioinformatics analyses showed that use of only three loci (within bssA , gabR and dhaM ) distinguished strains with a high level of efficiency. This HiSST scheme was applied to an epidemiological survey of S. marcescens in a neonatal intensive care unit (NICU). In a first case study, a strain responsible for an outbreak in the NICU was found in a sink drain of this unit, by using HiSST scheme and confirmed by WGS. The HiSST scheme was also applied to environmental DNA extracted from sink-environment samples. Diversity of S. marcescens was modest, with 11, 6 and 4 different sequence types (ST) of gabR , bssA and dhaM loci amongst 19 sink drains, respectively. Epidemiological relationships amongst sinks were inferred on the basis of pairwise comparisons of ST profiles. Further research aimed at relating ST distribution patterns to environmental features encompassing sink location, utilization and microbial diversity is needed to improve the surveillance and management of opportunistic pathogens. Importance Serratia marcescens is an important opportunistic human pathogen, multidrug resistant and often involved in outbreaks of nosocomial infections in neonatal intensive care unit. Here, we propose a quick and user-friendly method to select the best typing scheme for nosocomial outbreaks in relating environmental and clinical sources. This method, named high-throughput short sequence typing (HiSST), allows to distinguish strains and to explore the diversity profile of non-culturable S. marcescens . The application of HiSST profile analysis for environmental DNA offers new possibilities to track opportunistic pathogens, identify their origin and relate their distribution pattern with environmental features encompassing sink location, utilization and microbial diversity. Adaptation of the method to other opportunistic pathogens is expected to improve knowledge regarding their ecology, which of significant interest for epidemiological risk assessment and elaborate outbreak mitigation strategies.


Sign in / Sign up

Export Citation Format

Share Document