The widely conserved Era G-protein contains an RNA-binding domain required for Era function in vivo

2002 ◽  
Vol 33 (6) ◽  
pp. 1118-1131 ◽  
Author(s):  
Brian H. Johnstone ◽  
Aaron A. Handler ◽  
Diana K. Chao ◽  
Vi Nguyen ◽  
Michael Smith ◽  
...  
2006 ◽  
Vol 26 (6) ◽  
pp. 2029-2036 ◽  
Author(s):  
Catherine M. O'Connor ◽  
Kathleen Collins

ABSTRACT Telomerase reverse transcriptase (TERT) and telomerase RNA (TER) assemble as part of a holoenzyme that synthesizes telomeric repeats at chromosome ends. Genetic approaches have identified proteins that are required for in vivo association of TERT and TER, including the Tetrahymena telomerase holoenzyme protein p65. Here, we use quantitative assays to define the mechanisms underlying p65 function in holoenzyme biogenesis. We demonstrate that four modules of p65 contribute affinity for TER, including a C-terminal domain that recognizes the conserved dinucleotide bulge of central stem IV. This C-terminal domain is necessary and sufficient for p65's function in enhancing the recruitment of TERT to TER. Finally, we show that p65 and TERT assemble on TER with hierarchical rather than cooperative binding. These findings elucidate an extensive network of p65-TER recognition specificity and define a novel p65 RNA binding domain that initiates telomerase holoenyzme biogenesis.


2021 ◽  
Vol 22 (19) ◽  
pp. 10263
Author(s):  
Martin Panigaj ◽  
Michael P. Marino ◽  
Jakob Reiser

Lentiviral (LV) vectors have emerged as powerful tools for transgene delivery ex vivo but in vivo gene therapy applications involving LV vectors have faced a number of challenges, including the low efficiency of transgene delivery, a lack of tissue specificity, immunogenicity to both the product encoded by the transgene and the vector, and the inactivation of the vector by the human complement cascade. To mitigate these issues, several engineering approaches, involving the covalent modification of vector particles or the incorporation of specific protein domains into the vector’s envelope, have been tested. Short synthetic oligonucleotides, including aptamers bound to the surface of LV vectors, may provide a novel means with which to retarget LV vectors to specific cells and to shield these vectors from neutralization by sera. The purpose of this study was to develop strategies to tether nucleic acid sequences, including short RNA sequences, to LV vector particles in a specific and tight fashion. To bind short RNA sequences to LV vector particles, a bacteriophage lambda N protein-derived RNA binding domain (λN), fused to the measles virus hemagglutinin protein, was used. The λN protein bound RNA sequences bearing a boxB RNA hairpin. To test this approach, we used an RNA aptamer specific to the human epidermal growth factor receptor (EGFR), which was bound to LV vector particles via an RNA scaffold containing a boxB RNA motif. The results obtained confirmed that the EGFR-specific RNA aptamer bound to cells expressing EGFR and that the boxB containing the RNA scaffold was bound specifically to the λN RNA binding domain attached to the vector. These results show that LV vectors can be equipped with nucleic acid sequences to develop improved LV vectors for in vivo applications.


2003 ◽  
Vol 23 (12) ◽  
pp. 4083-4093 ◽  
Author(s):  
Wencheng Liu ◽  
Jeremy Seto ◽  
Etienne Sibille ◽  
Miklos Toth

ABSTRACT A deficit in the Jerky protein in mice causes recurrent seizures reminiscent of temporal lobe epilepsy. Jerky is present in mRNA particles in neurons. We show that the N-terminal 168 amino acids of Jerky are necessary and sufficient for mRNA binding. The binding domain is similar to the two tandemly arranged homeodomain-like helix-turn-helix DNA binding motifs of centromere binding protein B. The putative helix-turn-helix motifs of Jerky can also bind double-stranded DNA and represent a novel mammalian RNA/DNA binding domain. Microarray analysis identified mRNAs encoding proteins involved in ribosome assembly and cellular stress response that specifically bound to the RNA binding domain of Jerky both in vitro and in vivo. These data suggest that epileptogenesis in Jerky-deficient mice most likely involves pathways associated with ribosome biogenesis and neuronal survival and/or apoptosis.


2002 ◽  
Vol 13 (10) ◽  
pp. 3683-3695 ◽  
Author(s):  
Petra Björk ◽  
Göran Baurén ◽  
ShaoBo Jin ◽  
Yong-Guang Tong ◽  
Thomas R. Bürglin ◽  
...  

Synthesis of the ribosomal subunits from pre-rRNA requires a large number of trans-acting proteins and small nucleolar ribonucleoprotein particles to execute base modifications, RNA cleavages, and structural rearrangements. We have characterized a novel protein, RNA-binding domain-1 (RBD-1), that is involved in ribosome biogenesis. This protein contains six consensus RNA-binding domains and is conserved as to sequence, domain organization, and cellular location from yeast to human. RBD-1 is essential in Caenorhabditis elegans. In the dipteran Chironomus tentans, RBD-1 (Ct-RBD-1) binds pre-rRNA in vitro and anti-Ct-RBD-1 antibodies repress pre-rRNA processing in vivo. Ct-RBD-1 is mainly located in the nucleolus in an RNA polymerase I transcription-dependent manner, but it is also present in discrete foci in the interchromatin and in the cytoplasm. In cytoplasmic extracts, 20–30% of Ct-RBD-1 is associated with ribosomes and, preferentially, with the 40S ribosomal subunit. Our data suggest that RBD-1 plays a role in structurally coordinating pre-rRNA during ribosome biogenesis and that this function is conserved in all eukaryotes.


Author(s):  
Khairan Khairan ◽  
Rinaldi Idroes ◽  
Trina E. Tallei ◽  
Muhammad J. Nasim ◽  
Claus Jacob

Background: SARS-CoV-2 has caused more than fifty three million people worldwide infected and almost one million and four hundred thousand deaths. Currently, the appropriate therapeutic drugs are not yet available to treat diseases caused by this coronaviruses (CoVs) infection. It is due to the fact that discoveries and developments of new medication require a relatively long time. The alternative solutions for this viral infection is by utilizing medicinal plants-based bioactive compounds as therapeutic agents against COVID-19. Methods: In this review, a molecular docking study was a method that used to determine the potential of some bioactive compounds from medicinal plants as therapeutics agents against COVID-19. The results of this review still require further investigation to clinically validate either in vitro or in vivo, to find the effective antiviral drugs from medicinal plants for COVID-19 treatment. Results: From a total of 60 identified of medicinal plants, 50 of them have possible effects as therapeutics agents against particular target proteins encoded by the CoVs genes such as Nsp1, Nsp3 (Nsp3b, Nsp3c, PLpro and Nsp3e), Nsp7_Nsp8, Nsp9-Nsp10, Nsp14-Nsp16 complexes, 3CLpro, E protein, ORF7a, Spike (S) glycoprotein, C-terminal RNA binding domain (CRBD), N-terminal RNA binding domain (NRBD), helicase and RdRp. The most common of the bioactive compounds from the medicinal plants as therapeutics agents for COVID-19 treatment were flavonoids compounds. Conclusion: The medicinal plants can serve as starting points for therapeutics agent development against some target proteins of SARS-CoV-2. Nevertheless, the results are in need for clinical validation, either through in vitro or in vivo in COVID-19 treatment.


2002 ◽  
Vol 66 (3) ◽  
pp. 682-684 ◽  
Author(s):  
Takeshi HAYASHI ◽  
Maino TAHARA ◽  
Kenta IWASAKI ◽  
Yoshiaki KOUZUMA ◽  
Makoto KIMURA

FEBS Letters ◽  
2021 ◽  
Author(s):  
Guan‐Ru Liao ◽  
Yeu‐Yang Tseng ◽  
Ching‐Yu Tseng ◽  
Ying‐Ping Huang ◽  
Ching‐Hsiu Tsai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document