scholarly journals Medicinal genetics approach towards identifying the molecular target of a novel inhibitor of fungal cell wall assembly

2003 ◽  
Vol 48 (4) ◽  
pp. 1029-1042 ◽  
Author(s):  
Kappei Tsukahara ◽  
Katsura Hata ◽  
Kazutaka Nakamoto ◽  
Koji Sagane ◽  
Nao-aki Watanabe ◽  
...  
2010 ◽  
Vol 66 (a1) ◽  
pp. s32-s32
Author(s):  
Alex Schuettelkopf ◽  
Daan van Aalten ◽  
Helge Dorfmueller

Microbiology ◽  
2010 ◽  
Vol 156 (8) ◽  
pp. 2484-2494 ◽  
Author(s):  
Julia Calderon ◽  
Martin Zavrel ◽  
Enrico Ragni ◽  
William A. Fonzi ◽  
Steffen Rupp ◽  
...  

The fungal cell wall plays a crucial role in host–pathogen interactions. Its formation is the result of the coordinated activity of several extracellular enzymes, which assemble the constituents, and remodel and hydrolyse them in the extracellular space. Candida albicans Phr1 and Phr2 proteins belong to family GH72 of the β-(1,3)-glucanosyltransferases and play a crucial role in cell wall assembly. PHR1 and PHR2, homologues of Saccharomyces cerevisiae GAS1, are differently regulated by extracellular pH. PHR1 is expressed when ambient pH is 5.5 or higher, whereas PHR2 has the reverse expression pattern. Their deletion causes a pH-conditional defect in morphogenesis and virulence. In this work we explored whether PHR1 deletion affects the ability of C. albicans to adhere to and invade human epithelia. PHR1 null mutants exhibited a marked reduction in adhesion to both abiotic surfaces and epithelial cell monolayers. In addition, the mutant was unable to penetrate and invade reconstituted human epithelia. Transcription profiling of selected hyphal-specific and adhesin-encoding genes indicated that in the PHR1 null mutant, HWP1 and ECE1 transcript levels were similarly reduced in both adhesion and suspension conditions. These results, combined with microscopy analysis of the septum position, suggest that PHR1 is not required for the induction of hyphal development but plays a key role in the maintenance of hyphal growth. Thus, the β-(1,3)-glucan processing catalysed by Phr1p is of fundamental importance in the maintenance of the morphological state on which the adhesive and invasive properties of C. albicans greatly depend.


2007 ◽  
Vol 7 (1) ◽  
pp. 112-121 ◽  
Author(s):  
Magdalena Martín-Urdíroz ◽  
M. Isabel G. Roncero ◽  
José Antonio González-Reyes ◽  
Carmen Ruiz-Roldán

ABSTRACT A new myosin motor-like chitin synthase gene, chsVb, has been identified in the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici. Phylogenetic analysis of the deduced amino acid sequence of the chsVb chitin synthase 2 domain (CS2) revealed that ChsVb belongs to class VII chitin synthases. The ChsVb myosin motor-like domain (MMD) is shorter than the MMD of class V chitin synthases and does not contain typical ATP-binding motifs. Targeted disrupted single (ΔchsVb) and double (ΔchsV ΔchsVb) mutants were unable to infect and colonize tomato plants or grow invasively on tomato fruit tissue. These strains were hypersensitive to compounds that interfere with fungal cell wall assembly, produced lemon-like shaped conidia, and showed swollen balloon-like structures in hyphal subapical regions, thickened walls, aberrant septa, and intrahyphal hyphae. Our results suggest that the chsVb gene is likely to function in polarized growth and confirm the critical importance of cell wall integrity in the complex infection process of this fungus.


mSphere ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Leo D. Bemena ◽  
Kyunghun Min ◽  
James B. Konopka ◽  
Aaron M. Neiman

The cell wall is the interface between the fungal cell and its environment and disruption of cell wall assembly is an effective strategy for antifungal therapies. Therefore, a detailed understanding of how cell walls form is critical to identify potential drug targets and develop therapeutic strategies.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Vishukumar Aimanianda ◽  
Catherine Simenel ◽  
Cecile Garnaud ◽  
Cecile Clavaud ◽  
Rui Tada ◽  
...  

ABSTRACTβ-(1,3)-Glucan, the major fungal cell wall component, ramifies through β-(1,6)-glycosidic linkages, which facilitates its binding with other cell wall components contributing to proper cell wall assembly. UsingSaccharomyces cerevisiaeas a model, we developed a protocol to quantify β-(1,6)-branching on β-(1,3)-glucan. PermeabilizedS. cerevisiaeand radiolabeled substrate UDP-(14C)glucose allowed us to determine branching kinetics. A screening aimed at identifying deletion mutants with reduced branching among them revealed only two, thebgl2Δ andgas1Δ mutants, showing 15% and 70% reductions in the branching, respectively, compared to the wild-type strain. Interestingly, a recombinant Gas1p introduced β-(1,6)-branching on the β-(1,3)-oligomers following its β-(1,3)-elongase activity. Sequential elongation and branching activity of Gas1p occurred on linear β-(1,3)-oligomers as well as Bgl2p-catalyzed products [short β-(1,3)-oligomers linked by a linear β-(1,6)-linkage]. The doubleS. cerevisiae gas1Δbgl2Δ mutant showed a drastically sick phenotype. AnScGas1p ortholog, Gel4p fromAspergillus fumigatus, also showed dual β-(1,3)-glucan elongating and branching activity. BothScGas1p andA. fumigatusGel4p sequences are endowed with a carbohydrate binding module (CBM), CBM43, which was required for the dual β-(1,3)-glucan elongating and branching activity. Our report unravels the β-(1,3)-glucan branching mechanism, a phenomenon occurring during construction of the cell wall which is essential for fungal life.IMPORTANCEThe fungal cell wall is essential for growth, morphogenesis, protection, and survival. In spite of being essential, cell wall biogenesis, especially the core β-(1,3)-glucan ramification, is poorly understood; the ramified β-(1,3)-glucan interconnects other cell wall components. Once linear β-(1,3)-glucan is synthesized by plasma membrane-bound glucan synthase, the subsequent event is its branching event in the cell wall space. UsingSaccharomyces cerevisiaeas a model, we identified GH72 and GH17 family glycosyltransferases, Gas1p and Bgl2p, respectively, involved in the β-(1,3)-glucan branching. The sick phenotype of the doubleScgas1Δbgl2Δ mutant suggested that β-(1,3)-glucan branching is essential. In addition toScGas1p, GH72 familyScGas2p andAspergillus fumigatusGel4p, having CBM43 in their sequences, showed dual β-(1,3)-glucan elongating and branching activity. Our report identifies the fungal cell wall β-(1,3)-glucan branching mechanism. The essentiality of β-(1,3)-glucan branching suggests that enzymes involved in the glucan branching could be exploited as antifungal targets.


FEBS Letters ◽  
2003 ◽  
Vol 548 (1-3) ◽  
pp. 59-68 ◽  
Author(s):  
Charles F. Thomas ◽  
Pawan K. Vohra ◽  
John G. Park ◽  
Veenu Puri ◽  
Andrew H. Limper ◽  
...  

2003 ◽  
Vol 2 (1) ◽  
pp. 159-169 ◽  
Author(s):  
Victoria Martín ◽  
Blanca García ◽  
Elena Carnero ◽  
Angel Durán ◽  
Yolanda Sánchez

ABSTRACT β-Glucans are the main components of the fungal cell wall. Fission yeast possesses a family of β-glucan synthase-related genes. We describe here the cloning and characterization of bgs3 +, a new member of this family. bgs3 + was cloned as a suppressor of a mutant hypersensitive to Echinocandin and Calcofluor White, drugs that interfere with cell wall biosynthesis. Disruption of the gene is lethal, and a decrease in Bgs3p levels leads to rounded cells with thicker walls, slightly reduces the amount of the β-glucan, and raises the amount of α-glucan polymer. These cells finally died. bgs3 + is expressed in vegetative cells grown in different conditions and during mating and germination and is not enhanced by stress situations. Consistent with the observed expression pattern, Bgs3-green fluorescence protein (GFP-Bgs3p) was found at the growing tips during interphase and at the septum prior to cytokinesis, always localized to growth areas. We also found GFP-Bgs3p in mating projections, during the early stages of zygote formation, and at the growing pole during ascospore germination. We conclude that Bgs3p localization is restricted to growth areas and that Bgs3p is a glucan synthase homologue required for cell wall biosynthesis and cell elongation in the fission yeast life cycle.


Sign in / Sign up

Export Citation Format

Share Document