Size, peripheral auditory tuning and target strength in noctuid moths

2000 ◽  
Vol 25 (4) ◽  
pp. 346-353 ◽  
Author(s):  
Alex P. Norman ◽  
Gareth Jones
Keyword(s):  
2009 ◽  
Vol 1 (1) ◽  
Author(s):  
Henry M. Manik

A preliminary research programme was carried out in order to study the acoustic wave reflection or target strength (TS) of tuna fish using a quantitative echo sounder (QES). The relationships between TS to fork length (FL) and swimbladder volume, for bigeye tuna (Thunnus obesus) and yellowfin tuna (T. albacares) are investigated. The TS of bigeye tuna was about 3 dB higher than yellowfin tuna when comparing species at the same size. The result can be correlated to the swimbladder volume differencebetween species. The relationship between TS and swimbladder volume was quantified for both species.Keywords: tuna fish, target strength, quantitative echo sounder


Author(s):  
I Pérez-Arjona ◽  
L Godinho ◽  
V Espinosa

Abstract The method of fundamental solutions has been applied to evaluate the influence of fish models geometrical features on the target strength (TS) directivity and TS frequency response of swimbladdered fish. Simplified models were considered for two fish species: gilt-head sea bream (Sparus aurata, Linnaeus 1758) and Atlantic salmon (Salmo salar, Linnaeus 1758), and different geometrical details of their morphology were studied, such as backbone presence, and its curvature or the inclusion of vertebrae modulation. Swimbladder shape and tilt, together with the inclusion of backbone (and its realistic curvature) for dorsal measurements were the most important features for proper estimation of mean TS. The estimation of mean TS is considered including the effect of fish tilt, the echosounder frequency, and the fish-to-transducer distance.


Author(s):  
J. M. Gray ◽  
S. V. Subramanian

A quantitative understanding of hierarchical evolution of microstructure is essential in order to design the base chemistry and optimize rolling schedules to obtain the morphological microstructure coupled with high density and dispersion of crystallographic high angle boundaries to achieve the target strength and fracture properties in higher grade line pipe steels, microalloyed with niobium. Product-process integration has been the key concept underlying the development of niobium microalloyed line pipe steel technology over the years. The development of HTP technology based on 0.1 wt % Nb and low interstitial was predicated by advances in process metallurgy to control interstitial elements to low levels (C <0.03wt% and N< 0.003wt%), sulfur to ultra-low levels (S<20ppm), as well as in product metallurgy based on advances in basic science aspects of thermo-mechanical rolling and phase transformation of pancaked austenite under accelerated cooling conditions, and toughness properties of heat affected zones in welding of niobium microalloyed line pipes. A historical perspective/technological overview of evolution of HTP for line pipe applications is the focus of this paper in order to highlight the key metallurgical concepts underlying Nb microalloying technology which have paved the way for successful development of higher grade line pipe steels over the years.


2017 ◽  
Vol 42 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Carolina Lins ◽  
Alex Castro ◽  
Giovanna I.S. Medina ◽  
Eliza R.F.B.M. Azevedo ◽  
Bruno S. Donato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document