scholarly journals Does transpiration control stomatal responses to water vapour pressure deficit?

1997 ◽  
Vol 20 (1) ◽  
pp. 131-135 ◽  
Author(s):  
J. A. BUNCE
2017 ◽  
Vol 284 (1867) ◽  
pp. 20171478 ◽  
Author(s):  
E. C. Eto ◽  
P. C. Withers ◽  
C. E. Cooper

Birds have many physiological characteristics that are convergent with mammals. In the light of recent evidence that mammals can maintain a constant insensible evaporative water loss (EWL) over a range of perturbing environmental conditions, we hypothesized that birds might also regulate insensible EWL, reflecting this convergence. We found that budgerigars ( Melopsittacus undulatus ) maintain EWL constant over a range of relative humidities at three ambient temperatures. EWL, expressed as a function of water vapour pressure deficit, differed from a physical model where the water vapour pressure deficit between the animal and the ambient air is the driver of evaporation, indicating physiological control of EWL. Regulating EWL avoids thermoregulatory impacts of varied evaporative heat loss; changes in relative humidity had no effect on body temperature, metabolic rate or thermal conductance. Our findings that a small bird can regulate EWL are evidence that this is a common feature of convergently endothermic birds and mammals, and may therefore be a fundamental characteristic of endothermy.


Food Research ◽  
2021 ◽  
Vol 5 (6) ◽  
pp. 109-118
Author(s):  
D. Lentzou ◽  
G. Xanthopoulos ◽  
C. Templalexis ◽  
A. Kaltsa

Transpiration and respiration are two mechanisms of water loss in fresh agricultural products, resulting in visual and texture degradation. Neglecting respiration as a mechanism of water loss may lead to erroneous results at saturation where water vapour pressure deficit is zero and thus water loss is expected to be zero, however, the existence of a finite water loss is noted. In this context, an analysis of the associated with transpiration and respiration water loss in figs (Ficus carica L.) was carried out at 0oC, 10oC and 20oC and 45.64%, 80.22% and 98.65% relative humidity as well as the air conditions of walk-in cold storage rooms. The estimated transpiration rate ranged between 0.11-1.416 mg cm-2 h -1 for a water vapour pressure deficit of 0.0-0.98 kPa. The water vapour pressure deficit estimation was based on the difference between cold air temperature and figs’ surface temperature. The respiration rate was calculated at 0oC, 10oC and 20oC as 0.47±0.08, 0.94±0.11 and 2.69±0.17 mLCO2100g-1 h -1 . Quantification of the water loss showed that at 20oC and saturation, the water loss due to respiration accounts for 3.9% of the respective water loss due to water vapour pressure deficit while on average, the water loss due to respiration accounts for 1.5%, 2.1% and 2.6% of the water loss due to water vapour pressure deficit at 0oC, 10oC and 20oC.


CORD ◽  
2002 ◽  
Vol 18 (02) ◽  
pp. 34
Author(s):  
Gomes, F.P. ◽  
Mielke, M.S. ◽  
Almeida, A. F. ◽  
Muniz, W. S.

Net photosynthetic (A) and leaf transpiration (E) rates and stomatal conductance to water vapour (gs) of Malayan Yellow Dwarf (MYD) and Brazilian Green Dwarf (BGD) coconut accessions (Cocos nucifera var. ‘nana’ L.) were studied and discussed in terms of the technical aspects related to light-response curves in field conditions. Measurements of gas exchange were performed during four days, in April and may 2000, at the Cocoa Research Center Experimental Station (Una - BA, Brazil). The A, gs and E parameters were significantly (P < 0.05) different between the two genotypes. The mean maximum values of A, gs and E were 10.4 and 12.0 µmol CO2 m-2 s-1, 0.21 and 0.35 mol H2O m-2 s-1 and 3.07 and 3.69 mmol m-2 s-1 for MYD and BGD, respectively. For both genotypes a good fitting of the light-response curve models were obtained, indicating that A and gs were dependent of the photosynthetically active radiation incident on leaf surface (Qi), in spite of high genotipic variation. Interesting results were achieved when an empirical multiplicative model was used. The model relating A or gs with Qi and with leaf-to-air water vapour pressure deficit inside the chamber (VPDL) was tested for both genotypes and showed a negative influence of the latter on the stomatal behavior and consequently on A. Such effect was more pronounced in BGD than in MYD. These and others relationships involving leaf gas exchange and microclimatic variables in coconut palm trees are discussed


Sign in / Sign up

Export Citation Format

Share Document