Selecting cells with different Alzheimer's disease gamma-secretase activity using FACS. Differential effect of presenilin exon 9 deletion on gamma- and epsilon-cleavage

2003 ◽  
Vol 270 (3) ◽  
pp. 495-506 ◽  
Author(s):  
M. Fleur Sernee ◽  
Genevieve Evin ◽  
Janetta G. Culvenor ◽  
Jose A. Villadangos ◽  
Konrad Beyreuther ◽  
...  
2006 ◽  
Vol 2 ◽  
pp. S441-S442
Author(s):  
Cristine Alves da Costa ◽  
Claire Sunyach ◽  
Raphaelle Pardossi-Piquard ◽  
Bruno Vincent ◽  
Jean Sevalle ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Barbara Tate ◽  
Timothy D. McKee ◽  
Robyn M. B. Loureiro ◽  
Jo Ann Dumin ◽  
Weiming Xia ◽  
...  

The Amyloid Hypothesis states that the cascade of events associated with Alzheimer's disease (AD)—formation of amyloid plaques, neurofibrillary tangles, synaptic loss, neurodegeneration, and cognitive decline—are triggered by Aβpeptide dysregulation (Kakuda et al., 2006, Sato et al., 2003, Qi-Takahara et al., 2005). Sinceγ-secretase is critical for Aβproduction, many in the biopharmaceutical community focused onγ-secretase as a target for therapeutic approaches for Alzheimer's disease. However, pharmacological approaches to controlγ-secretase activity are challenging because the enzyme has multiple, physiologically critical protein substrates. To lower amyloidogenic Aβpeptides without affecting otherγ-secretase substrates, the epsilon (ε) cleavage that is essential for the activity of many substrates must be preserved. Small molecule modulators ofγ-secretase activity have been discovered that spare theεcleavage of APP and other substrates while decreasing the production of Aβ42. Multiple chemical classes ofγ-secretase modulators have been identified which differ in the pattern of Aβpeptides produced. Ideally, modulators will allow theεcleavage of all substrates while shifting APP cleavage from Aβ42and other highly amyloidogenic Aβpeptides to shorter and less neurotoxic forms of the peptides without altering the total Aβpool. Here, we compare chemically distinct modulators for effects on APP processing andin vivoactivity.


2002 ◽  
Vol 38 ◽  
pp. 37-49 ◽  
Author(s):  
Janelle Nunan ◽  
David H Small

The proteolytic processing of the amyloid-beta protein precursor plays a key role in the development of Alzheimer's disease. Cleavage of the amyloid-beta protein precursor may occur via two pathways, both of which involve the action of proteases called secretases. One pathway, involving beta- and gamma-secretase, liberates amyloid-beta protein, a protein associated with the neurodegeneration seen in Alzheimer's disease. The alternative pathway, involving alpha-secretase, precludes amyloid-beta protein formation. In this review, we describe the progress that has been made in identifying the secretases and their potential as therapeutic targets in the treatment or prevention of Alzheimer's disease.


2021 ◽  
pp. 1-17
Author(s):  
Alvaro Miranda ◽  
Enrique Montiel ◽  
Henning Ulrich ◽  
Cristian Paz

Alzheimer’s disease (AD) is associated with marked atrophy of the cerebral cortex and accumulation of amyloid plaques and neurofibrillary tangles. Amyloid plaques are formed by oligomers of amyloid-β (Aβ) in the brain, with a length of 42 and 40 amino acids. α-secretase cleaves amyloid-β protein precursor (AβPP) producing the membrane-bound fragment CTFα and the soluble fragment sAβPPα with neuroprotective activity; β-secretase produces membrane-bound fragment CTFβ and a soluble fragment sAβPPβ. After α-secretase cleavage of AβPP, γ-secretase cleaves CTFα to produce the cytoplasmic fragment AICD and P3 in the non-amyloidogenic pathway. CTFβ is cleaved by γ-secretase producing AICD as well as Aβ in amyloidogenic pathways. In the last years, the study of natural products and synthetic compounds, such as α-secretase activity enhancers, β-secretase inhibitors (BACE-1), and γ-secretase activity modulators, have been the focus of pharmaceuticals and researchers. Drugs were improved regarding solubility, blood-brain barrier penetration, selectivity, and potency decreasing Aβ42. In this regard, BACE-1 inhibitors, such as Atabecestat, NB-360, Umibecestat, PF-06751979, Verubecestat, LY2886721, Lanabecestat, LY2811376, and Elenbecestat, were submitted to phase I-III clinical trials. However, inhibition of Aβ production did not recover cognitive functions or reverse the disease. Novel strategies are being developed, aiming at a partial reduction of Aβ production, such as the development of γ-secretase modulators or α-secretase enhancers. Such therapeutic tools shall focus on slowing down or minimizing the progression of neuronal damage. Here, we summarize structures and the activities of the latest compounds designed for AD treatment, with remarkable in vitro, in vivo, and clinical phase activities.


Sign in / Sign up

Export Citation Format

Share Document