Sensitivity of ecosystem functioning to changes in trophic structure, functional group composition and species diversity in belowground food webs

2002 ◽  
Vol 17 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Heikki Setälä
Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 239
Author(s):  
Wei Wang ◽  
Long Liang ◽  
Yaoli Peng ◽  
Maria Holuszko

Micro-Fourier transform infrared (micro-FTIR) spectroscopy was used to correlate the surface chemistry of low rank coal with hydrophobicity. Six square areas without mineral impurities on low rank coal surfaces were selected as testing areas. A specially-designed methodology was applied to conduct micro-FTIR measurements and contact angle tests on the same testing area. A series of semi-quantitative functional group ratios derived from micro-FTIR spectra were correlated with contact angles, and the determination coefficients of linear regression were calculated and compared in order to identify the structure of the functional group ratios. Finally, two semi-quantitative ratios composed of aliphatic carbon hydrogen, aromatic carbon hydrogen and two different types of carbonyl groups were proposed as indicators of low rank coal hydrophobicity. This work provided a rapid way to predict low rank coal hydrophobicity through its functional group composition and helped us understand the hydrophobicity heterogeneity of low rank coal from the perspective of its surface chemistry.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e74852 ◽  
Author(s):  
Justus P. Deikumah ◽  
Clive A. McAlpine ◽  
Martine Maron

2018 ◽  
Vol 15 (9) ◽  
pp. 2629-2647 ◽  
Author(s):  
Yann Lelièvre ◽  
Jozée Sarrazin ◽  
Julien Marticorena ◽  
Gauthier Schaal ◽  
Thomas Day ◽  
...  

Abstract. Hydrothermal vent sites along the Juan de Fuca Ridge in the north-east Pacific host dense populations of Ridgeia piscesae tubeworms that promote habitat heterogeneity and local diversity. A detailed description of the biodiversity and community structure is needed to help understand the ecological processes that underlie the distribution and dynamics of deep-sea vent communities. Here, we assessed the composition, abundance, diversity and trophic structure of six tubeworm samples, corresponding to different successional stages, collected on the Grotto hydrothermal edifice (Main Endeavour Field, Juan de Fuca Ridge) at 2196 m depth. Including R. piscesae, a total of 36 macrofaunal taxa were identified to the species level. Although polychaetes made up the most diverse taxon, faunal densities were dominated by gastropods. Most tubeworm aggregations were numerically dominated by the gastropods Lepetodrilus fucensis and Depressigyra globulus and polychaete Amphisamytha carldarei. The highest diversities were found in tubeworm aggregations characterised by the longest tubes (18.5 ± 3.3 cm). The high biomass of grazers and high resource partitioning at a small scale illustrates the importance of the diversity of free-living microbial communities in the maintenance of food webs. Although symbiont-bearing invertebrates R. piscesae represented a large part of the total biomass, the low number of specialised predators on this potential food source suggests that its primary role lies in community structuring. Vent food webs did not appear to be organised through predator–prey relationships. For example, although trophic structure complexity increased with ecological successional stages, showing a higher number of predators in the last stages, the food web structure itself did not change across assemblages. We suggest that environmental gradients provided by the biogenic structure of tubeworm bushes generate a multitude of ecological niches and contribute to the partitioning of nutritional resources, releasing communities from competition pressure for resources and thus allowing species to coexist.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0125678 ◽  
Author(s):  
Tanja Strecker ◽  
Romain L. Barnard ◽  
Pascal A. Niklaus ◽  
Michael Scherer-Lorenzen ◽  
Alexandra Weigelt ◽  
...  

2018 ◽  
Vol 3 (1) ◽  
pp. 9-22 ◽  
Author(s):  
N. A. Boltacheva ◽  
M. V. Makarov ◽  
L. V. Bondarenko ◽  
M. A. Kovaleva

During 2015–2106 the macrozoobenthos under the clam farm located in the area of Sevastopol was investigated. The aim of the study is to consider species composition, density and biomass of macrozoobenthos in the area of the clam farm. The samples were taken using standard benthic techniques. Relatively low species diversity was observed, with 56 species of macrozoobenthos identified. The density was 500–975 ind. per m², the biomass varied from 0.8 to 381.1 g·m-2. The community of the bivalve mollusk Lucinella divaricata (Linnaeus, 1758) was found. Trophic structure of the community with high quantity of detritus feeders dominated by small polychaetes was determined. The dominating, typical and rare species were identified. Comparison with the data obtained in 1957 in Evpatoriya – Sevastopol area at the same depths and sediments was made.


2014 ◽  
Vol 14 (4) ◽  
pp. 4787-4826 ◽  
Author(s):  
S. Gilardoni ◽  
P. Massoli ◽  
L. Giulianelli ◽  
M. Rinaldi ◽  
M. Paglione ◽  
...  

Abstract. The interaction of aerosol with atmospheric water affects the processing and wet removal of atmospheric particles. Understanding such interaction is mandatory to improve model description of aerosol lifetime and ageing. We analyzed the aerosol-water interaction at high relative humidity during fog events in the Po Valley, in the framework of the ARPA-ER Supersite project. For the first time in this area, the changes in particle chemical composition caused by fog are discussed along with changes in particle microphysics. During the experiment, 14 fog events were observed. The average mass scavenging efficiency was 70% for nitrate, 68% for ammonium, 61% for sulfate, 50% for organics, and 39% for black carbon. After fog formation, the interstitial aerosol was dominated by particles smaller than 200 nm Dva (vacuum aerodynamic diameter) and enriched in carbonaceous aerosol, mainly black carbon and water insoluble organic aerosol (WIOA). For each fog event, the size segregated scavenging efficiency of nitrate and organic aerosol (OA) was calculated by comparing chemical species size distribution before and after fog formation. For both nitrate and OA, the size segregated scavenging efficiency followed a sigmoidal curve, with values close to zero below 100 nm Dva and close to 1 above 700 nm Dva. OA was able to affect scavenging efficiency of nitrate in particles smaller than 300 nm Dva. A linear correlation between nitrate scavenging and particle hygroscopicity (κ) was observed, indicating that 44–51% of the variability of nitrate scavenging in smaller particles (below 300 nm Dva) was explained by changes in particle chemical composition. The size segregated scavenging curves of OA followed those of nitrate, suggesting that organic scavenging was controlled by mixing with water-soluble species. In particular, functional group composition and OA elemental analysis indicated that more oxidized OA was scavenged more efficiently than less oxidized OA. Nevertheless, the small variability of organic functional group composition during the experiment did not allow us to discriminate the effect of different organic functionalities on OA scavenging.


Sign in / Sign up

Export Citation Format

Share Document