WT1 GENE MUTATIONS IN DENYS‐DRASH AND FRASIER SYNDROME

Nephrology ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. A110-A110
Author(s):  
McTaggart Sj ◽  
Algar E ◽  
Chow Cw ◽  
Powell Hr ◽  
Jones CL.
Nephrology ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. A110-A110
Author(s):  
McTaggart Sj ◽  
Algar E ◽  
Chow Cw ◽  
Powell Hr ◽  
Jones CL.

2013 ◽  
Vol 172 (12) ◽  
pp. 1705-1706
Author(s):  
Mustafa Aydin ◽  
Nilay Hakan ◽  
Aysegul Zenciroglu ◽  
Ozlem Aydog ◽  
Nurullah Okumus

2014 ◽  
Vol 98 ◽  
pp. 499 ◽  
Author(s):  
S. Shishido ◽  
Y. Hamasaki ◽  
T. Kawamura ◽  
M. Muramatsu ◽  
H. Sato ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 144-144 ◽  
Author(s):  
Iris H.I.M. Hollink ◽  
Marry M. van den Heuvel-Eibrink ◽  
Martin Zimmermann ◽  
Brian V. Balgobind ◽  
Susan T.C.J.M. Arentsen-Peters ◽  
...  

Abstract In an array-CGH screening study of cytogenetically normal AML (CN-AML), we detected a cryptic 11p13-deletion including the WT1 gene in one childhood AML sample. The remaining WT1 allele in this sample carried a nonsense mutation. WT1 gene mutations have recently been identified in approximately 10% of adult CN-AML. Of interest, WT1 mutations were found to be a new independent poor prognostic factor in adult CN-AML (Virappane et al. JCO2008, Paschka et al. JCO2008). WT1 mutations have also been reported in childhood AML; however, their clinical relevance in childhood AML is not known. In this study, we investigated the frequency, clinical characteristics and prognostic value of WT1 mutations (exons 7–10) in a large, well-characterized cohort of childhood AML samples (n=298). Additionally, a subset of these samples was screened for mutations in exons 1–6 (n=68), and for micro-deletions in the WT1 gene (n=24). Survival analysis was restricted to the subset of patients with de novo AML who were treated using uniform DCOG and BFM treatment protocols (n=232). Fifty-three pathogenic WT1 mutations were detected in 35/298 (12%) samples taken at diagnosis. Mutations were mainly located in exon 7 (n=43), but also in exons 1 (n=2), 2 (n=1), 3 (n=2), 8 (n=1) and 9 (n=4). Predominantly frame-shift mutations were found (n=41), next to nonsense mutations (n=6) and missense mutations (n=6); the former two resulting in a truncated WT1 protein. In 19/35 (54%) of the WT1-mutated samples, we detected more than one WT1 aberration. This included either a different WT1 mutation (n=15), a homozygous WT1 mutation (n=2), or a deletion of the other WT1 allele (n=2). WT1 mutations clustered significantly in the CN-AML subgroup (21/94=22%; p<0.001). NPM1 and WT1 mutations were mutually exclusive, but WT1-mutated samples were more likely to carry FLT3/ITD (43% vs. 17%; p<0.001) and CEBPα mutations (26% vs. 9%; p=0.007). Mutations in patients below the age of 3 years were only found sporadically (1/60=2%). The highest frequency was found in the age category 3–10 years (17/76=18%), and decreased above the age of 10 years (17/128=12%; p=0.008). WT1-mutated AML was correlated with a higher white blood cell count at diagnosis (WBC) (57.2×109/l vs. 34.1×109/l; p=0.007); no correlation was found with sex or FAB-classification. WT1-mutated AML patients had a significantly worse outcome when compared with patients with WT1 wild-type AML (5-year overall survival (pOS) 35% vs. 66%; p=0.002; 5-year event-free survival (pEFS) 22% vs. 46%; p<0.001; and 5-year cumulative incidence of relapses (CIR) 70% vs. 44%, respectively; pGray<0.001). Moreover, using multivariate analysis including age, WBC, cytogenetics, FLT3/ITD and stem cell transplantation, WT1 mutations were identified as an independent poor prognostic factor for pOS (HR1.79; p=0.04), pEFS (HR2.05; p=0.005) and relapse-free survival (pRFS) (HR2.44; p=0.001). We identified patients carrying both a WT1 mutation as well as a FLT3/ITD as a very poor prognostic subgroup (5-year pOS 21%). The mutational hotspots in the WT1 gene were located within areas of primer-probe combinations used for WT1-based minimal residual disease (MRD) detection. Furthermore, in 4/28 (14%) wild-type diagnostic-relapse pairs a mutation was gained at relapse, which may also effect MRD detection. In conclusion, WT1 mutations are present in 12% of childhood AML at diagnosis and in 22% of patients with CN-AML, and are a novel independent poor prognostic marker in childhood AML. Furthermore, their presence may have implications for current WT1-based MRD detection.


2006 ◽  
Vol 15 (4) ◽  
pp. 143-149
Author(s):  
Akiko Maesaka ◽  
Asako Higuchi ◽  
Shinobu Kotoh ◽  
Yukihiro Hasegawa ◽  
Masahiro Ikeda ◽  
...  

2000 ◽  
Vol 52 (4) ◽  
pp. 519-524 ◽  
Author(s):  
A. Koziell ◽  
E. Charmandari ◽  
P. C. Hindmarsh ◽  
L. Rees ◽  
P. Scambler ◽  
...  
Keyword(s):  
Wt1 Gene ◽  

2009 ◽  
pp. n/a-n/a ◽  
Author(s):  
Carolyn Owen ◽  
Jude Fitzgibbon ◽  
Peter Paschka

2010 ◽  
Vol 68 (2) ◽  
pp. 155-158 ◽  
Author(s):  
Jianguo Li ◽  
Jie Ding ◽  
Dan Zhao ◽  
Zihua Yu ◽  
Qingfeng Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document