Field evidence of trait-mediated indirect interactions in a rocky intertidal food web

2002 ◽  
Vol 5 (2) ◽  
pp. 241-245 ◽  
Author(s):  
Geoffrey C. Trussell ◽  
Patrick J. Ewanchuk ◽  
Mark D. Bertness
Oecologia ◽  
1986 ◽  
Vol 71 (1) ◽  
pp. 75-89 ◽  
Author(s):  
Bruce A. Menge ◽  
Jane Lubchenco ◽  
Stephen D. Gaines ◽  
Linda R. Ashkenas

2017 ◽  
Vol 284 (1851) ◽  
pp. 20162590 ◽  
Author(s):  
Geoffrey C. Trussell ◽  
Catherine M. Matassa ◽  
Patrick J. Ewanchuk

In simple, linear food chains, top predators can have positive indirect effects on basal resources by causing changes in the traits (e.g. behaviour, feeding rates) of intermediate consumers. Although less is known about trait-mediated indirect interactions (TMIIs) in more complex food webs, it has been suggested that such complexity dampens trophic cascades. We examined TMIIs between a predatory crab ( Carcinus maenas ) and two ecologically important basal resources, fucoid algae ( Ascophyllum nodosum ) and barnacles ( Semibalanus balanoides ), which are consumed by herbivorous ( Littorina littorea ) and carnivorous ( Nucella lapillus ) snails, respectively. Because crab predation risk suppresses snail feeding rates, we hypothesized that crabs would also shape direct and indirect interactions among the multiple consumers and resources. We found that the magnitude of TMIIs between the crab and each resource depended on the suite of intermediate consumers present in the food web. Carnivorous snails ( Nucella ) transmitted TMIIs between crabs and barnacles. However, crab–algae TMIIs were transmitted by both herbivorous ( Littorina ) and carnivorous ( Nucella ) snails, and these TMIIs were additive. By causing Nucella to consume fewer barnacles, crab predation risk allowed fucoids that had settled on or between barnacles to remain in the community. Hence, positive interactions between barnacles and algae caused crab–algae TMIIs to be strongest when both consumers were present. Studies of TMIIs in more realistic, reticulate food webs will be necessary for a more complete understanding of how predation risk shapes community dynamics.


2019 ◽  
Author(s):  
Lauren G. Shoemaker ◽  
Allison K. Barner ◽  
Leonora S. Bittleston ◽  
Ashley I. Teufel

1AbstractCoexistence theory and food web theory are two cornerstones of the longstanding effort to understand how species coexist. Although competition and predation are known to act simultaneously in communities, theory and empirical study of the two processes continue to be developed independently. Here, we integrate modern coexistence theory and food web theory to simultaneously quantify the relative importance of predation, competition, and environmental fluctuations for species coexistence. We first examine coexistence in a classic multi-trophic model, adding complexity to the food web using a novel machine learning approach. We then apply our framework to a parameterized rocky intertidal food web model, partitioning empirical coexistence dynamics. We find that both environmental fluctuation and variation in predation contribute substantially to species coexistence. Unexpectedly, covariation in these two forces tends to destabilize coexistence, leading to new insights about the role of bottom-up versus top-down forces in both theory and the rocky intertidal ecosystem.


2013 ◽  
Vol 6 (4) ◽  
pp. 475-493 ◽  
Author(s):  
J. Nathaniel Holland ◽  
Yuanshi Wang ◽  
Shan Sun ◽  
Donald L. DeAngelis

2015 ◽  
Vol 112 (20) ◽  
pp. 6389-6394 ◽  
Author(s):  
Elisa Benincà ◽  
Bill Ballantine ◽  
Stephen P. Ellner ◽  
Jef Huisman

Although mathematical models and laboratory experiments have shown that species interactions can generate chaos, field evidence of chaos in natural ecosystems is rare. We report on a pristine rocky intertidal community located in one of the world’s oldest marine reserves that has displayed a complex cyclic succession for more than 20 y. Bare rock was colonized by barnacles and crustose algae, they were overgrown by mussels, and the subsequent detachment of the mussels returned bare rock again. These processes generated irregular species fluctuations, such that the species coexisted over many generations without ever approaching a stable equilibrium state. Analysis of the species fluctuations revealed a dominant periodicity of about 2 y, a global Lyapunov exponent statistically indistinguishable from zero, and local Lyapunov exponents that alternated systematically between negative and positive values. This pattern indicates that the community moved back and forth between stabilizing and chaotic dynamics during the cyclic succession. The results are supported by a patch-occupancy model predicting similar patterns when the species interactions were exposed to seasonal variation. Our findings show that natural ecosystems can sustain continued changes in species abundances and that seasonal forcing may push these nonequilibrium dynamics to the edge of chaos.


Sign in / Sign up

Export Citation Format

Share Document