scholarly journals Generalized LMMSE Filtering with Out-of-Sequence Observations in Arbitrary Constant Delay

2019 ◽  
Vol 28 (6) ◽  
pp. 1217-1226
Author(s):  
Ming Lei ◽  
Christophe Baehr ◽  
Zhongliang Jing
2001 ◽  
Vol 11 (03) ◽  
pp. 737-753 ◽  
Author(s):  
TATYANA LUZYANINA ◽  
KOEN ENGELBORGHS ◽  
DIRK ROOSE

In this paper we apply existing numerical methods for bifurcation analysis of delay differential equations with constant delay to equations with state-dependent delay. In particular, we study the computation, continuation and stability analysis of steady state solutions and periodic solutions. We collect the relevant theory and describe open theoretical problems in the context of bifurcation analysis. We present computational results for two examples and compare with analytical results whenever possible.


1964 ◽  
Vol 86 (2) ◽  
pp. 265-270 ◽  
Author(s):  
G. Horvay ◽  
M. Dacosta

When an infinitely long cylindrical rod travels from a chamber at one temperature ϑa to a chamber (insulated from the first) at a higher temperature ϑf, then heat will leak out along the rod from the second chamber to the first, whose amount decreases as the speed of the rod increases. Using the Wiener-Hopf method of solution, we determine the temperature distribution in the rod for the case where in the second chamber the heat-transfer coefficient h+ is infinite, while in the first chamber it has an arbitrary constant value h. Families of curves illustrate the temperature distribution in the two special cases where h = ∞ (isothermal boundary conditions in lower chamber) and where h = 0 (rod is insulated in lower chamber).


2003 ◽  
Vol 13 (06) ◽  
pp. 807-841 ◽  
Author(s):  
R. Ouifki ◽  
M. L. Hbid

The purpose of the paper is to prove the existence of periodic solutions for a functional differential equation with state-dependent delay, of the type [Formula: see text] Transforming this equation into a perturbed constant delay equation and using the Hopf bifurcation result and the Poincaré procedure for this last equation, we prove the existence of a branch of periodic solutions for the state-dependent delay equation, bifurcating from r ≡ 0.


Sign in / Sign up

Export Citation Format

Share Document