Modified sub-integer range alignment based on minimum entropy for ISAR

Author(s):  
Wang Rui ◽  
Zeng Tao ◽  
Li Feng
2020 ◽  
Author(s):  
Yue Lu ◽  
Jian Yang ◽  
Yue Zhang ◽  
Shiyou Xu

Abstract Range alignment is an essential procedure in the translation motion compensation of inverse synthetic aperture radar imaging. Global optimization or maximum-correlation-based algorithms have been used to realize range alignment. However, it is still challenging to achieve range alignment in low signal-to-noise ratio scenarios, which are common in inverse synthetic aperture radar imaging. In this paper, a novelanti-noise range alignment approach is proposed. In this new method, the target motion is modelled as a uniformly accelerated motion during a short sub-aperture time. Minimum entropy optimization is implemented to estimate the motion parameters in each sub-aperture. These estimated parameters can be used to align the profiles of the current sub-aperture. Once the range profiles of eachsub-aperture are aligned, the non-coherent accumulation gain is obtained by averaging all profiles in each sub-aperture, which can be used as valuable information. The accumulation and correlation method is applied to align the average range profiles of each sub-aperture because the former step focuses mainly on alignment within the sub-apertures. Experimental results based on simulated and real measured data demonstrate the effectiveness of the proposed algorithm in low signal-to-noise ratio scenarios.


2020 ◽  
Author(s):  
Yue Lu ◽  
Jian Yang ◽  
Yue Zhang ◽  
Shiyou Xu

Abstract Range alignment is an essential procedure in translation motion compensation of inverse synthetic aperture radar imaging. Global optimization or maximum correlation-based algorithms have been used to realize range alignment. However, it is still challenging to achieve range alignment in low signal-to-noise ratio scenarios, which are common in inverse synthetic aperture radar imaging. In this paper, a novel anti-noise range alignment approach is proposed. In this new method, the target's motion is modelled as a uniformly accelerated motion during a short sub-aperture time. Minimum entropy optimization is implemented to estimate the motion parameters in each sub-aperture. These estimated parameters can be used to align the profiles of the current sub-aperture. Once each sub-aperture's range profiles are aligned, the noncoherent accumulation gain is obtained by averaging all profiles in each sub-aperture, which can be used as valuable information. The accumulation and correlation method is applied to align the average range profiles of each sub-aperture for the reason that the former step mainly focuses on alignment within the sub-apertures. Experimental results based on simulated and real measured data demonstrate the effectiveness of the proposed algorithm in low signal-to-noise ratio scenarios.


2011 ◽  
Vol 33 (8) ◽  
pp. 1809-1815
Author(s):  
Gang Xu ◽  
Lei Yang ◽  
Lei Zhang ◽  
Ya-chao Li ◽  
Meng-dao Xing

2021 ◽  
Vol 11 (14) ◽  
pp. 6590
Author(s):  
Krittakom Srijiranon ◽  
Narissara Eiamkanitchat

Air pollution is a major global issue. In Thailand, this issue continues to increase every year, similar to other countries, especially during the dry season in the northern region. In this period, particulate matter with aerodynamic diameters smaller than 10 and 2.5 micrometers, known as PM10 and PM2.5, are important pollutants, most of which exceed the national standard levels, the so-called Thailand air quality index (T-AQI). Therefore, this study created a prediction model to classify T-AQI calculated from both types of PM. The neuro-fuzzy model with a minimum entropy principle model is proposed to transform the original data into new informative features. The processes in this model are able to discover appropriate separation points of the trapezoidal membership function by applying the minimum entropy principle. The membership value of the fuzzy section is then passed to the neural section to create a new data feature, the PM level, for each hour of the day. Finally, as an analytical process to obtain new knowledge, predictive models are created using new data features for better classification results. Various experiments were utilized to find an appropriate structure with high prediction accuracy. The results of the proposed model were favorable for predicting both types of PM up to three hours in advance. The proposed model can help people who are planning short-term outdoor activities.


Sign in / Sign up

Export Citation Format

Share Document