A novel authentication protocol for mobile nodes in multi-base-station wireless sensor network

Author(s):  
Zhou Zhiping ◽  
Shao Nannan ◽  
Zhuang Xuebo
Author(s):  
Pawan Singh Mehra

AbstractWith huge cheap micro-sensing devices deployed, wireless sensor network (WSN) gathers information from the region and delivers it to the base station (BS) for further decision. The hotspot problem occurs when cluster head (CH) nearer to BS may die prematurely due to uneven energy depletion resulting in partitioning the network. To overcome the issue of hotspot or energy hole, unequal clustering is used where variable size clusters are formed. Motivated from the aforesaid discussion, we propose an enhanced fuzzy unequal clustering and routing protocol (E-FUCA) where vital parameters are considered during CH candidate selection, and intelligent decision using fuzzy logic (FL) is taken by non-CH nodes during the selection of their CH for the formation of clusters. To further extend the lifetime, we have used FL for the next-hop choice for efficient routing. We have conducted the simulation experiments for four scenarios and compared the propound protocol’s performance with recent similar protocols. The experimental results validate the improved performance of E-FUCA with its comparative in respect of better lifetime, protracted stability period, and enhanced average energy.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 1322 ◽  
Author(s):  
Vrince Vimal ◽  
Madhav J Nigam

Clustering of the sensors in wireless sensor network is done to achieve energy efficiency. The nodes, which are unable to join any cluster, are referred to as isolated nodes and tend to transfer information straight to the base station. It is palpable that isolated nodes and cluster heads communicate with the base station and tend to exhaust their energy leaving behind coverage holes. In this paper, we propose the innovative clustering scheme using mobile sink approach to extend networks lifetime. The proposed (ORP-MS) algorithm is implemented in MATLAB 2017a and the results revealed that the proposed algorithm outdid the existing algorithms in terms networks lifetime and energy efficiency simultaneously achieved high throughput.  


2018 ◽  
Vol 7 (2.23) ◽  
pp. 59 ◽  
Author(s):  
Surinder Singh ◽  
Hardeep Singh Saini

The wireless sensor network has group of sensors which can sense the data and route this data to base station. As there is no physical connection between sensor and base station the important data can be routed without wires. The broadcast nature of wireless sensor network makes it prone to security threat to the valuable data. The attacker node can detect the data by creating their own data aggregation and routing mechanism .The number of attacks can be possible on the network layer. Out of these attacks wormhole is one of the major attack which can change the routing method of the whole wireless sensor network. In this attack,the attacker node can control the packet transmission of whole network and route it to the tunnel of nodes. The major drawback of this attack is to increase the packet drop and disturbing the routing mechanism. A number of security techniques are developed by the researcher to reduce the packet drop ratio and secure the routing mechanism of the network. Out of all thesetechniquesfew related to packet drop ratio are discussed in this paper. TheLightweight countermeasure for the wormhole attack (LITEWORP) based on Dynamic Source routing (DSR) protocol security technique,Delay Per Hop Indication (Delphi) based on AODV(Avoidance Routing Protocol) Protocol security technique and MOBIWORP based on DSRprotocol security technique reduce the packet loss percentage 40%,43% and 35% respectively.   


Author(s):  
Yakubu Abdul-Wahab Nawusu ◽  
Alhassan Abdul-Barik ◽  
Salifu Abdul-Mumin

Extending the lifetime of a wireless sensor network is vital in ensuring continuous monitoring functions in a target environment. Many techniques have appeared that seek to achieve such prolonged sensing gains. Clustering and improved selection of cluster heads play essential roles in the performance of sensor network functions. Cluster head in a hierarchical arrangement is responsible for transmitting aggregated data from member nodes to a base station for further user-specific data processing and analysis. Minimising the quick dissipation of cluster heads energy requires a careful choice of network factors when selecting a cluster head to prolong the lifetime of a wireless sensor network. In this work, we propose a multi-criteria cluster head selection technique to extend the sensing lifetime of a heterogeneous wireless sensor network. The proposed protocol incorporates residual energy, distance, and node density in selecting a cluster head. Each factor is assigned a weight using the Rank Order Centroid based on its relative importance. Several simulation tests using MATLAB 7.5.0 (R2007b) reveal improved network lifetime and other network performance indicators, including stability and throughput, compared with popular protocols such as LEACH and the SEP. The proposed scheme will be beneficial in applications requiring reliable and stable data sensing and transmission functions.


A Wireless Sensor Network (WSN) is a component with sensor nodes that continuously observes environmental circumstances. Sensor nodes accomplish different key operations like sensing temperature and distance. It has been used in many applications like computing, signal processing, and network selfconfiguration to expand network coverage and build up its scalability. The Unit of all these sensors that exhibit sensing and transmitting information will offer more information than those offered by autonomously operating sensors. Usually, the transmitting task is somewhat critical as there is a huge amount of data and sensors devices are restricted. Being the limited number of sensor devices the network is exposed to different types of attacks. The Traditional security mechanisms are not suitable for WSN as they are generally heavy and having limited number of nodes and also these mechanisms will not eliminate the risk of other attacks. WSN are most useful in different crucial domains such as health care, environment, industry, and security, military. For example, in a military operation, a wireless sensor network monitors various activities. If an event is detected, these sensor nodes sense that and report the data to the primary (base) station (called sink) by making communication with other nodes. To collect data from WSN base Stations are commonly used. Base stations have more resources (e.g. computation power and energy) compared to normal sensor nodes which include more or less such limitations. Aggregation points will gather the data from neighboring sensor nodes to combine the data and forward to master (base) stations, where the data will be further forwarded or processed to a processing center. In this manner, the energy can be preserved in WSN and the lifetime of network is expanded.


Due to the recent advancements in the fields of Micro Electromechanical Sensors (MEMS), communication, and operating systems, wireless remote monitoring methods became easy to build and low cost option compared to the conventional methods such as wired cameras and vehicle patrols. Pipeline Monitoring Systems (PMS) benefit the most of such wireless remote monitoring since each pipeline would span for long distances up to hundreds of kilometers. However, precise monitoring requires moving large amounts of data between sensor nodes and base station for processing which require high bandwidth communication protocol. To overcome this problem, In-Situ processing can be practiced by processing the collected data locally at each node instead of the base station. This Paper presents the design and implementation of In-situ pipeline monitoring system for locating damaging activities based on wireless sensor network. The system built upon a WSN of several nodes. Each node contains high computational 1.2GHz Quad-Core ARM Cortex-A53 (64Bit) processor for In-Situ data processing and equipped in 3-axis accelerometer. The proposed system was tested on pipelines in Al-Mussaib gas turbine power plant. During test knocking events are applied at several distances relative to the nodes locations. Data collected at each node are filtered and processed locally in real time in each two adjacent nodes. The results of the estimation is then sent to the supervisor at base-station for display. The results show the proposed system ability to estimate the location of knocking event.


2017 ◽  
Vol 16 (7) ◽  
pp. 7031-7039
Author(s):  
Chamanpreet Kaur ◽  
Vikramjit Singh

Wireless sensor network has revolutionized the way computing and software services are delivered to the clients on demand. Our research work proposed a new method for cluster head selection having less computational complexity. It was also found that the modified approach has improved performance to that of the other clustering approaches. The cluster head election mechanism will include various parameters like maximum residual energy of a node, minimum separation distance and minimum distance to the mobile node. Each CH will create a TDMA schedule for the member nodes to transmit the data. Nodes will have various level of power for signal amplification. The three levels of power are used for amplifying the signal. As the member node will send only its own data to the cluster head, the power level of the member node is set to low. The cluster head will send the data of the whole cluster to the mobile node, therefore the power level of the cluster head is set to medium. High power level is used for mobile node which will send the data of the complete sector to the base station. Using low energy level for intra cluster transmissions (within the cluster) with respect to cluster head to mobile node transmission leads in saving much amount of energy. Moreover, multi-power levels also reduce the packet drop ratio, collisions and/ or interference for other signals. It was found that the proposed algorithm gives a much improved network lifetime as compared to existing work. Based on our model, multiple experiments have been conducted using different values of initial energy.


Wireless sensor network plays prominently in various applications of the emerging advanced wireless technology such as smart homes, Commercial, defence sector and modern agriculture for effective communication. There are many issues and challenges involved during the communication process. Energy conservation is the major challenging matter and fascinates issue among the researchers. The reason for that, Wireless sensor network has ‘n’ number of sensor nodes to identify and recognize the data and send that data to the base station or sink through either directly or intermediate node. These nodes with poor energy create intricacy on the data rate or flow and substantially affect the lifespan of a wireless sensor network. To decrease energy utilization the sensor node has to neglect unnecessary received data from the neighbouring nodes prior to send the optimum data to the sink or another device. When a specific target is held in a particular sector, it can be identified by many sensors. To rectify such process this paper present Data agglomeration technique is one of the persuasive techniques in the neglecting unnecessary data and of improves energy efficiency and also it increases the lifetime of WSNs. The efficacious data aggregation paradigm can also decrease traffic in the network. This paper discussed various data agglomeration technique for efficient energy in WSN.


Author(s):  
Ortega-Corral César ◽  
B. Ricardo Eaton-González ◽  
Florencio López Cruz ◽  
Laura Rocío, Díaz-Santana Rocha

We present a wireless system applied to precision agriculture, made up of sensor nodes that measure soil moisture at different depths, applied to vine crops where drip irrigation is applied. The intention is to prepare a system for scaling, and to create a Wireless Sensor Network (WSN) that communicates by radio frequency with a base station (ET), so that the gathered data is stored locally and can be sent out an Internet gateway.


Sign in / Sign up

Export Citation Format

Share Document