A compound eye for a simple mobile robot

Author(s):  
J.M. Bishop
Keyword(s):  
Author(s):  
E. R. Macagno ◽  
C. Levinthal

The optic ganglion of Daphnia Magna, a small crustacean that reproduces parthenogenetically contains about three hundred neurons: 110 neurons in the Lamina or anterior region and about 190 neurons in the Medulla or posterior region. The ganglion lies in the midplane of the organism and shows a high degree of left-right symmetry in its structures. The Lamina neurons form the first projection of the visual output from 176 retinula cells in the compound eye. In order to answer questions about structural invariance under constant genetic background, we have begun to reconstruct in detail the morphology and synaptic connectivity of various neurons in this ganglion from electron micrographs of serial sections (1). The ganglion is sectioned in a dorso-ventra1 direction so as to minimize the cross-sectional area photographed in each section. This area is about 60 μm x 120 μm, and hence most of the ganglion fit in a single 70 mm micrograph at the lowest magnification (685x) available on our Zeiss EM9-S.


Author(s):  
Matti Järvilehto ◽  
Riitta Harjula

The photoreceptor cells in the compound eyes of higher diptera are clustered in groups (ommatidia) of eight receptor cells. The cells from six adjacent ommatidia are organized into optical units, neuro-ommatia sharing the same visual field. In those ommatidia the optical axes of the photopigment containing structures (rhabdomeres) are parallel. The rhabdomeres of the photoreceptor cells are separated from each other by an interstitial i.e innerommatidial space (IOS). In the photoreceptor cell body, besides of the normal cell organelles, a cellular matrix is a structurally apparent component. Similar kind of reticular formation is also found in the IOS containing some unidentified filamentary substance, of which composition and functional significance for optical properties of vision is the aim of this report.The prefixed (2% PA + 0.2% GA in 0.1-n phosphate buffer, pH 7.4, for 1h), frozen section blocks of the compound eye of the blowfly (Calliphora erythrocephala) were prepared by immuno-cryo-techniques. The ultrathin cryosections were incubated with antibodies of monoclonal α-tubulin and polyclonal smooth muscle actin. Control labelings of excess of antigen, non-immune serum and non-present antibody were perforated.


2019 ◽  
Vol 139 (9) ◽  
pp. 1041-1050
Author(s):  
Hiroyuki Nakagomi ◽  
Yoshihiro Fuse ◽  
Hidehiko Hosaka ◽  
Hironaga Miyamoto ◽  
Takashi Nakamura ◽  
...  

2013 ◽  
Vol 133 (5) ◽  
pp. 502-509 ◽  
Author(s):  
Kouhei Komiya ◽  
Shunsuke Miyashita ◽  
Yutaka Maruoka ◽  
Yutaka Uchimura

Sign in / Sign up

Export Citation Format

Share Document